K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì ( x + 1 ) ( x - 3 ) < 0

=> x + 1 và x - 3 trái dấu

Mà x + 1 > x - 3 ∀ x ∈ Q

\(\Rightarrow\hept{\begin{cases}x+1>0\\x-3< 0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x>-1\\x< 3\end{cases}}\)

Vậy -1 < x < 3

27 tháng 9 2021

(x+1)(x-3)<0

th1

\(\hept{\begin{cases}x+1< 0\\x-3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -1\\x>3\end{cases}\left(voly\right)}\)

th2\(\hept{\begin{cases}x+1>0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 3\end{cases}\Leftrightarrow}-1< x< 3}\)

16 tháng 9 2020

a) Ta có: \(\left(x-\frac{1}{5}\right).\left(x+\frac{4}{7}\right)>0\)

   + \(\hept{\begin{cases}x-\frac{1}{5}>0\\x+\frac{4}{7}>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x>\frac{1}{5}\\x>-\frac{4}{7}\end{cases}}\)\(\Rightarrow\)\(x>\frac{1}{5}\)

   + \(\hept{\begin{cases}x-\frac{1}{5}< 0\\x+\frac{4}{7}< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< \frac{1}{5}\\x< -\frac{4}{7}\end{cases}}\)\(\Rightarrow\)\(x< -\frac{4}{7}\)

Vậy \(x>\frac{1}{5}\)hoặc \(x< -\frac{4}{7}\)

16 tháng 9 2020

b) Ta có: \(\left(x+\frac{2}{3}\right).\left(x+2\right)< 0\)

   + \(\hept{\begin{cases}x+\frac{2}{3}>0\\x+2< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x>-\frac{2}{3}\\x< -2\end{cases}}\)\(\Rightarrow\)\(-\frac{2}{3}< x< -2\)( vô lí )

    + \(\hept{\begin{cases}x+\frac{2}{3}< 0\\x+2>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< -\frac{2}{3}\\x>-2\end{cases}}\)\(\Rightarrow\)\(-\frac{2}{3}>x>-2\)

Vậy \(-2< x< -\frac{2}{3}\)

31 tháng 8 2017
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1) b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c) =(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc) c)Đặt x-y=a;y-z=b;z-x=c a+b+c=x-y-z+z-x=o đưa về như bài b d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y) =x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
2 tháng 9 2017

Steolla bạn viết tách ra từng phần đc ko?

28 tháng 9 2016

Chắc câu b sai?

 

4 tháng 10 2019

Bạn ơi chứng minh nhỏ hơn hoặc bằng 0 nhé

\(=-y^{2018}-\left(x^2-x+1\right)\)

\(=-y^{2018}-\left(x+1\right)^2\)

Vì \(\hept{\begin{cases}-y^{2018}\le0;\forall x,y\\-\left(x+1\right)^2\le0;\forall x,y\end{cases}}\)

\(\Rightarrow-y^{2018}-\left(x+1\right)^2\le0;\forall x,y\left(đpcm\right)\)

4 tháng 12 2017

|2x-0,4|=3,2

\(\Rightarrow\orbr{\begin{cases}TH1:2x-0,4=3,2\\TH2:2x-0,4=-3,2\end{cases}}\Rightarrow\orbr{\begin{cases}2x=3,6\\2x=-2,8\end{cases}}\Rightarrow\orbr{\begin{cases}x=1,8\\x=-1,4\end{cases}}\)

Vậy x=1,8 hoặc x=-1,4

29 tháng 5 2018

\(\left(x+1\right)\left(x-2\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\)   hoặc      \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}\)        hoặc        \(\hept{\begin{cases}x< -1\\x>2\end{cases}}\) (loại)

Vậy \(-1< x< 2\)

\(\left(x-2\right)\left(\frac{x+2}{3}\right)>0\)

\(\Leftrightarrow\hept{\begin{cases}x-2>0\\\frac{x+2}{3}>0\end{cases}}\)    hoặc    \(\hept{\begin{cases}x-2< 0\\\frac{x+2}{3}< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>2\\x>-2\end{cases}}\)            hoặc    \(\hept{\begin{cases}x< 2\\x< -2\end{cases}}\)

Đến đây bạn tự xét rồi Vậy nha

29 tháng 5 2018

\(\left(x+1\right)\left(x-2\right)< 0\)

\(\Rightarrow\hept{\begin{cases}x+1< 0\Rightarrow x< -1\\x-2>0\Rightarrow x>2\end{cases}\Rightarrow-1< x< 2\left(KTM\right)}\)

\(\Rightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Rightarrow}-1< x< 2\Rightarrow x=0;1}\)

29 tháng 7 2016

cậu bít làm câu e. g .f h.i của thầy lâm nha

29 tháng 7 2016

ai giúp mk k cho