Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Phương trình tương đương với \(\left(x^2-2x-2\right)\left(x^2+5x-2\right)=0\) hay \(x^2-2x-2=0\) hoặc \(x^2+5x-2=0\). Đến đây sử dụng Delta hoặc viết hai phương trình dưới dạng \(\left(x-1\right)^2=3,\left(2x+5\right)^2=33\) ta được bốn nghiệm là \(x=1\pm\sqrt{3},-\frac{5}{2}\pm\frac{\sqrt{33}}{2}\)
b. Phương trình tương đương với \(3\left(x+5\right)\left(x+6\right)\left(x+9\right)=8x+6\left(x+5\right)\left(x+6\right)\leftrightarrow3\left(x+5\right)\left(x+6\right)\left(x+9\right)=\left(x+9\right)\left(6x+20\right)\)
hay \(\left(x+9\right)\left(3x^2+27x+70\right)=0\leftrightarrow x=-9.\)
a) Đặt \(x^2+3x+1=y\)
=> y(y+1) - 6 = 0
=> \(y^2+y-6=0\)
=> \(\left[\begin{array}{nghiempt}y=2\\y=-3\end{array}\right.\)
Với y = 2 ta có:
\(x^2+3x+1=2\)
=> \(\left[\begin{array}{nghiempt}x=\frac{-3+\sqrt{13}}{2}\\x=\frac{-3-\sqrt{13}}{2}\end{array}\right.\)
Với y = -3 ta có:
\(x^2+3x+1=-3\)
=>\(\left[\begin{array}{nghiempt}x=1\\x=-4\end{array}\right.\)
Có j không hiểu có thể hỏi lại mk
Chúc bạn làm bài tốt
b) \(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x-2}\right)^2=1^2\)
\(\Leftrightarrow x+3+x-2-2\sqrt{\left(x+3\right)\cdot\left(x-2\right)}=1\)
\(\Leftrightarrow2x+1-1=2\sqrt{\left(x+3\right)\left(x-2\right)}\)
\(\Leftrightarrow2x=2\sqrt{\left(x+3\right)\left(x-2\right)}\)
\(\Leftrightarrow x=\sqrt{\left(x+3\right)\left(x-2\right)}\)
\(\Leftrightarrow x^2=\left(\sqrt{\left(x+3\right)\left(x-2\right)}\right)^2\)
\(\Leftrightarrow x^2=x^2+x-6\)
\(\Leftrightarrow x-6=0\)
\(\Leftrightarrow x=6\)
\(\left(x+1\right)\left(3x+4\right)\left(6x+7\right)^2=6\)
<=> \(6\left(x+1\right).2\left(3x+4\right)\left(6x+7\right)^2=72\)
<=> \(\left(6x+6\right)\left(6x+8\right)\left(6x+7\right)^2-72=0\) (*)
Đặt: \(6x+7=t\) khi đó pt (*) trở thành:
\(\left(t-1\right)\left(t+1\right)t^2-72=0\)
<=> \(t^4-t^2-72=0\)
<=> \(\left(t-3\right)\left(t+3\right)\left(t^2+3\right)=0\)
<=> \(\orbr{\begin{cases}t-3=0\\t+3=0\end{cases}}\) (do t2 + 3 > 0 )
<=> \(\orbr{\begin{cases}t=3\\t=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}6x+7=3\\6x+7=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{2}{3}\\x=-\frac{5}{3}\end{cases}}}\)
Vậy...