K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2019

\(\frac{x+1}{2020}+\frac{x+2}{2019}+\frac{x+3}{2018}+\frac{x+4}{2017}=-4\)

=> \(\left[\frac{x+1}{2020}+1\right]+\left[\frac{x+2}{2019}+1\right]+\left[\frac{x+3}{2018}+1\right]+\left[\frac{x+4}{2017}+1\right]=-4\)

=> \(\left[\frac{x+1}{2020}+\frac{2020}{2020}\right]+\left[\frac{x+2}{2019}+\frac{2019}{2019}\right]+\left[\frac{x+3}{2018}+\frac{2018}{2018}\right]+\left[\frac{x+4}{2017}+\frac{2017}{2017}\right]=-4\)

=>  \(\frac{x+2021}{2020}+\frac{x+2021}{2019}+\frac{x+2021}{2018}+\frac{x+2021}{2017}=-4\)

=> \(\left[x+2021\right]\left[\frac{1}{2000}+\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}\right]=-4\)

Do \(\frac{1}{2020}>\frac{1}{2019}>\frac{1}{2018}>\frac{1}{2017}\)nên \(\frac{1}{2000}+\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}\ne0\)

Do đó : x + 2021 = -4 => x = -4 - 2021 = -2025

24 tháng 6 2019

(x+4)/2017 + (x+3)/2018 = (x+2)/2019 + (x+1)/2020

=> (x+4)/2017 + 1 + (x+3)/2018 + 1 = (x + 2)/2019 + 1 + (x + 1)/2020 + 1

=> (x+2021)/2017 + (x + 2021)/2018 = (x+2021)/2019 + (x+2021)/2020

=> (x+2021)(1/2017 + 1/2018) = (x + 2021)(1/2019+1/2020)

mà 1/2017 + 1/2018 khác 1/2019 + 1/2020

=> x + 2021 = 0

=> x = -2021

24 tháng 6 2019

\(\frac{x+4}{2017}+\frac{x+3}{2018}=\frac{x+2}{2019}+\frac{x+1}{2020}\)

\(\left(\frac{x+4}{2017}+1\right)+\left(\frac{x+3}{2018}+1\right)=\left(\frac{x+2}{2019}+1\right)+\left(\frac{x+1}{2020}+1\right)\)

\(\frac{x+4+2017}{2017}+\frac{x+3+2018}{2018}=\frac{x+2+2019}{2019}+\frac{x+1+2020}{2020}\)

\(\frac{x+2021}{2017}+\frac{x+2021}{2018}=\frac{x+2021}{2019}+\frac{x+2021}{2020}\)

\(\frac{x+2021}{2017}+\frac{x+2021}{2018}-\frac{x+2021}{2019}-\frac{x+2021}{2020}=0\)

\(\left(x-2021\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)

Vì \(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\ne0\)

\(\Rightarrow x-2021=0\)

Vậy \(x=2021\)

19 tháng 6 2017

Ta có : \(\frac{x-1}{2017}+\frac{x-2}{2018}-\frac{x-3}{2019}=\frac{x-4}{2020}\)

\(\Rightarrow\frac{x-1}{2017}+\frac{x-2}{2018}=\frac{x-4}{2020}+\frac{x-3}{2019}\)

\(\Rightarrow1+\frac{x-1}{2017}+1+\frac{x-2}{2018}=1+\frac{x-4}{2020}+1+\frac{x-3}{2019}\)

\(\Rightarrow\frac{2016+x}{2017}+\frac{2016+x}{2018}=\frac{2016+x}{2020}+\frac{2016+x}{2019}\)

\(\Rightarrow\frac{2016+x}{2017}+\frac{2016+x}{2018}-\frac{2016+x}{2019}-\frac{2016+x}{2020}=0\)

\(\Rightarrow\left(2016+x\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
\(\text{Mà : }\)\(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\ne0\)

\(\text{Nên : }\) \(2016+x=0\)

\(\Rightarrow x=-2016\)

1 tháng 1 2018

Giỏi wá!!!!!!!!

19 tháng 12 2021

Đề bài yêu cầu gì?

19 tháng 12 2021

Tìm B

5 tháng 1 2020

\(x=2019\)\(\Rightarrow x+1=2020\)

\(\Rightarrow B=x^{2019}-\left(x+1\right).x^{2018}+........-\left(x+1\right).x^2+\left(x+1\right).x+1\)

        \(=x^{2019}-x^{2019}+x^{2018}+.......-x^3-x^2+x^2+x+1\)

        \(=x+1=2020\)

Vậy tại \(x=2019\)thì \(B=2020\)

5 tháng 1 2020

Ta có x=2019

   => x + 1=2020

thay x+1 vào B, ta có:

\(A=x^{2019}-\left(x+1\right)x^{2018}+\left(x+1\right)x^{2017}-...+\left(x+1\right)x-1\)

=> \(A=x^{2019}-x^{2019}-x^{2018}+x^{2018}+x^{2017}-...+x^2+x-1\)

=> \(A=x-1=2020-1=2019\)

1 tháng 10 2020

Ta có :\(\frac{x+4}{2018}+\frac{x+3}{2019}=\frac{x+2}{2020}+\frac{x+1}{2021}\)

=> \(\left(\frac{x+4}{2018}+1\right)+\left(\frac{x+3}{2019}+1\right)=\left(\frac{x+2}{2020}+1\right)+\left(\frac{x+1}{2021}+1\right)\)

=> \(\frac{x+2022}{2018}+\frac{x+2022}{2019}=\frac{x+2022}{2020}+\frac{x+2022}{2021}\)

=> \(\frac{x+2022}{2018}+\frac{x+2022}{2019}-\frac{x+2022}{2020}-\frac{x+2022}{2021}=0\)

=> \(\left(x+2022\right)\left(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\right)=0\)

Vì \(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\ne0\)

=> x + 2022 = 0

=> x = -2022

Vậy x = -2022

1 tháng 10 2020

\(\frac{x+4}{2018}+\frac{x+3}{2019}=\frac{x+2}{2020}+\frac{x+1}{2021}\)  

\(\frac{x+4}{2018}+1+\frac{x+3}{2019}+1=\frac{x+2}{2020}+1+\frac{x+1}{2021}+1\) 

\(\frac{x+4}{2018}+\frac{2018}{2018}+\frac{x+3}{2019}+\frac{2019}{2019}=\frac{x+2}{2020}+\frac{2020}{2020}+\frac{x+1}{2021}+\frac{2021}{2021}\)   

\(\frac{x+2022}{2018}+\frac{x+2022}{2019}=\frac{x+2022}{2020}+\frac{x+2022}{2021}\)   

\(\frac{x+2022}{2018}+\frac{x+2022}{2019}-\frac{x+2022}{2020}-\frac{x+2022}{2021}=0\)   

\(\left(x+2022\right)\left(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\right)=0\)   

\(x+2022=0\left(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\ne0\right)\)   

\(x=0-2022\) 

\(x=-2022\)