Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\notin\left\{10;-10\right\}\)
Ta có: \(\dfrac{720}{x+10}+4=\dfrac{720}{x-10}\)
\(\Leftrightarrow\dfrac{720\left(x-10\right)}{\left(x+10\right)\left(x-10\right)}+\dfrac{4\left(x^2-100\right)}{\left(x+10\right)\left(x-10\right)}=\dfrac{720\left(x+10\right)}{\left(x+10\right)\left(x-10\right)}\)
Suy ra: \(720x-7200+4x^2-400-720x-7200=0\)
\(\Leftrightarrow4x^2=14800\)
\(\Leftrightarrow x^2=3700\)
hay \(x\in\left\{10\sqrt{37};-10\sqrt{37}\right\}\)
ĐKXĐ: \(x\ne\pm10\)
\(\Leftrightarrow\dfrac{180}{x-10}-\dfrac{180}{x+10}=1\)
\(\Leftrightarrow\dfrac{180\left(x+10-x+10\right)}{\left(x-10\right)\left(x+10\right)}=1\)
\(\Leftrightarrow\dfrac{3600}{x^2-100}=1\)
\(\Rightarrow x^2-100=3600\)
\(\Leftrightarrow x^2=3700\)
\(\Leftrightarrow x=\pm10\sqrt{37}\) (thỏa mãn)
x^2-3x+2=(x-1)(x-2)
dk x≠1;2
1+(x-5)(x-1)=3/10(x^2-3x+2)
10+10x^2-60x+50=3x^2-9x+6
7x^2-54x-54=0
x=(27±3√123)/7
\(\dfrac{1}{x^2-3x+2}-\dfrac{x-5}{2-x}=\dfrac{3}{10}\)
⇔ \(\dfrac{1}{x^2-x-2x+2}+\dfrac{x-5}{x-2}=\dfrac{3}{10}\)
⇔ \(\dfrac{10}{10\left(x-1\right)\left(x-2\right)}+\dfrac{10\left(x-5\right)\left(x-1\right)}{10\left(x-1\right)\left(x-2\right)}=\dfrac{3\left(x^2-3x+2\right)}{10\left(x-1\right)\left(x-2\right)}\)( x # 1 ; x # 2)
⇔ 10 + 10( x2 - 6x + 5)= 3(x2 - 3x + 2)
⇔ 10 + 10x2 - 60x + 50 = 3x2 - 9x + 6
⇔ 7x2 - 51x - 54 = 0
Phân tích ra
\(\Leftrightarrow\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-6\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-6\right)}=\dfrac{\left(\sqrt{x}-4\right)\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-6\right)}\)
\(\Leftrightarrow\dfrac{x-8\sqrt{x}+12}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-6\right)}-\dfrac{x-9\sqrt{x}+20}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-6\right)}=0\)
\(\Leftrightarrow\dfrac{x-8\sqrt{x}+12-x+9\sqrt{x}-20}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-6\right)}=0\)
\(\Leftrightarrow\sqrt{x}-8=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{8}\\x=-\sqrt{8}\end{matrix}\right.\)
a/ ĐKXĐ: \(x\ge-1\)
\(\sqrt{x+1+2\sqrt{x+1}+1}+\sqrt{x+1-6\sqrt{x+1}+9}=2\sqrt{x+1-2\sqrt{x+1}+1}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(\sqrt{x+1}-3\right)^2}=2\sqrt{\left(\sqrt{x+1}-1\right)^2}\)
\(\Leftrightarrow\sqrt{x+1}+1+\left|\sqrt{x+1}-3\right|=2\left|\sqrt{x+1}-1\right|\)
- Nếu \(\sqrt{x+1}\ge3\Leftrightarrow x\ge8\) pt trở thành:
\(\sqrt{x+1}+1+\sqrt{x+1}-3=2\sqrt{x+1}-2\)
\(\Leftrightarrow-2=-2\) (đúng)
- Nếu \(\sqrt{x+1}-1\le0\Leftrightarrow-1\le x\le0\) pt trở thành:
\(\sqrt{x+1}+1+3-\sqrt{x+1}=2-2\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{x+1}=-1< 0\) (vô nghiệm)
- Nếu \(0< x< 8\) pt trở thành:
\(\sqrt{x+1}+1+3-\sqrt{x+1}=2\sqrt{x+1}-2\)
\(\Leftrightarrow\sqrt{x+1}=3\Rightarrow x=8\left(l\right)\)
Vậy nghiệm của pt đã cho là \(x\ge8\)
b/ ĐKXĐ: \(x\ge\dfrac{-1}{4}\)
Đặt \(\sqrt{x+\dfrac{1}{4}}=t\ge0\Rightarrow x=t^2-\dfrac{1}{4}\) pt trở thành:
\(t^2-\dfrac{1}{4}+\sqrt{t^2+t+\dfrac{1}{4}}=2\)
\(\Leftrightarrow t^2-\dfrac{1}{4}+\sqrt{\left(t+\dfrac{1}{2}\right)^2}=2\)
\(\Leftrightarrow t^2+t+\dfrac{1}{4}-2=0\)
\(\Leftrightarrow4t^2+4t-7=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{-1+2\sqrt{2}}{2}\\t=\dfrac{-1-2\sqrt{2}}{2}< 0\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=t^2-\dfrac{1}{4}=\left(\dfrac{-1+2\sqrt{2}}{2}\right)^2-\dfrac{1}{4}=2-\sqrt{2}\)
Vậy pt có nghiệm duy nhất \(x=2-\sqrt{2}\)
a) ta có : \(\dfrac{x}{x-1}+\dfrac{6}{x+1}-4=0\Leftrightarrow\dfrac{x\left(x+1\right)+6\left(x-1\right)-4\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=0\)
\(\Leftrightarrow x^2+x+6x-6-4x^2+4=0\Leftrightarrow-3x^2+7x-2=0\)
ta có : \(\Delta=7^2-4\left(-3\right).\left(-2\right)=25>0\)
\(\Rightarrow\) phương trình có 2 nghiệm phân biệt
\(x=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-7+\sqrt{25}}{-6}=\dfrac{1}{3}\) ; \(x=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-7-\sqrt{25}}{-6}=2\)
vậy \(x=\dfrac{1}{3};x=2\)
câu b bn làm tương tự nha ; chỉ cần quy đồng rồi lấy tử bằng không là đc .
ĐK: ` x \ne 0`
`(x+10)(720/x-6)=720`
`<=>(720(x+10))/x-6(x+10)=720`
`<=>(720x+7200)/x-6x-60=720`
`<=>7200/x-6x=60`
`<=>7200-6x^2=60x`
`<=>` \(\left[{}\begin{matrix}x=30\\x=-40\end{matrix}\right.\)
Vậy `S={30;-40}`.
\((x+10)(\dfrac{720}{x}-6)=720\) (ĐK: x≠0)
⇔\(720x-6x^2+7200-60x=720x\)
⇔\((x-30)(x+40)=0\)
⇔\(\left[\begin{array}{} x-30=0\\ x+40=0 \end{array} \right.\)⇔\(\left[\begin{array}{} x=30\\ x=40 \end{array} \right.\)
Vậy S={30;−40}S={30;-40}.