K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
13 tháng 11 2023

loading... 

13 tháng 11 2023

Ta thấy: \(\left|x-y-5\right|\ge0\forall x;y\)

              \(\left(y-3\right)^4\ge0\forall y\)

\(\Rightarrow\left|x-y-5\right|+\left(y-3\right)^4\ge0\forall x;y\)

Mặt khác: \(\left|x-y-5\right|+\left(y-3\right)^4=0\)

nên: \(\left\{{}\begin{matrix}x-y-5=0\\y-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=y+5\\y=3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\)

Vậy \(x=8;y=3\).

15 tháng 2 2018

a) \(|x+\frac{3}{4}|+|y-\frac{1}{5}|+|x+y+z|=0\)

\(\Rightarrow|x+\frac{3}{4}|=|y-\frac{1}{5}|=|x+y+z|=0\)

\(\Rightarrow|x+\frac{3}{4}|=0\)                           \(\Rightarrow|y-\frac{1}{5}|=0\)                                \(\Rightarrow|x+y+z|=0\)

\(\Rightarrow x+\frac{3}{4}=0\)                              \(\Rightarrow y-\frac{1}{5}=0\)                                      \(\Rightarrow x+y+z=0\)

\(x=\frac{-3}{4}\)                                                \(y=\frac{1}{5}\)                                                 thay x=-3/4; y=1/5 vào biểu thức trên

                                                                                                                                          ta có \(\frac{-3}{4}+\frac{1}{5}+z=0\)

                                                                                                                                                        \(z=0-\frac{-3}{4}-\frac{1}{5}\)

      VẬY X=-3/4; Y=1/5; Z=11/20

B) \(|3x-4|+\left|3y-5\right|=0\)

\(\Rightarrow\left|3x-4\right|=\left|3y-5\right|=0\)

\(\Rightarrow\left|3x-4\right|=0\)                                    \(\Rightarrow\left|3y-5\right|=0\)

\(3x-4=0\)                                                    \(3y-5=0\)

\(3x=4\)                                                                    \(3y=5\)
\(x=\frac{4}{3}\)                                                                       \(y=\frac{5}{3}\)

VẬY X= 4/3; Y=5/3

C) \(\left|x+\frac{3}{4}\right|+\left|y-\frac{2}{5}\right|+\left|z+\frac{1}{2}\right|< 0\)

ĐỂ \(\left|x+\frac{3}{4}\right|+\left|y-\frac{2}{5}\right|+\left|z+\frac{1}{2}\right|< 0\)

\(\Rightarrow\left|x+\frac{3}{4}\right|;\left|y-\frac{2}{5}\right|;\left|z+\frac{1}{2}\right|< 0\)

MÀ GIÁ TRỊ TUYỆT ĐỐI LUÔN MANG SỐ NGUYÊN DƯƠNG

\(\Rightarrow x;y;z\in\varnothing\)

d) \(\left|x+\frac{1}{5}\right|+\left|3-y\right|=0\)

\(\Rightarrow\left|x+\frac{1}{5}\right|=\left|3-y\right|=0\)

\(\Rightarrow\left|x+\frac{1}{5}\right|=0\)                                \(\Rightarrow\left|3-y\right|=0\)

\(x+\frac{1}{5}=0\)                                                 \(3-y=0\)

\(x=\frac{-1}{5}\)                                                              \(y=3\)

VẬY X= -1/5; Y=3

CHÚC BN HỌC TỐT!!!!!!!

15 tháng 2 2018

Ta có : 

\(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x+\frac{3}{4}=0\\y-\frac{1}{5}=0\\x+y+z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-3}{4}\\y=\frac{1}{5}\\z=0-\frac{-3}{4}-\frac{1}{5}\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x=\frac{-3}{4}\\y=\frac{1}{5}\\z=\frac{11}{20}\end{cases}}\)

Vậy \(x=\frac{-3}{4};y=\frac{1}{5};z=\frac{11}{20}\)

1 tháng 8 2017

a,

\(\left|x+\dfrac{9}{2}\right|\ge0\forall x\\ \left|y+\dfrac{4}{3}\right|\ge0\forall y\\ \left|z+\dfrac{7}{2}\right|\ge0\forall z\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x,y,z\)

\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{9}{2}\right|=0\\\left|y+\dfrac{4}{3}\right|=0\\\left|z+\dfrac{7}{2}\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\z+\dfrac{7}{2}=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-9}{2}\\y=\dfrac{-4}{3}\\z=\dfrac{-7}{2}\end{matrix}\right.\)

Vậy \(x=\dfrac{-9}{2};y=\dfrac{-4}{3};z=\dfrac{-7}{2}\)

d,

\(\left|x+\dfrac{3}{4}\right|\ge0\forall x\\ \left|y-\dfrac{1}{5}\right|\ge0\forall y\\ \left|x+y+z\right|\ge0\forall x,y,z\\ \Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x,y,z\)

\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\\\left|y-\dfrac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{1}{5}=0\\x+y+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\x+y+z=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-3}{4}+\dfrac{1}{5}+z=0\end{matrix}\right.\\\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-11}{20}+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\z=\dfrac{11}{20}\end{matrix}\right.\)

1 tháng 8 2017

Bạn mới hỏi ở dưới rồi :v

30 tháng 9 2017

a/ Ta có :

\(\left\{{}\begin{matrix}\left(x-1\right)^4\ge0\\\left(y-3\right)^4\ge0\end{matrix}\right.\)

\(\left(x-1\right)^4+\left(y-3\right)^4=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^4=0\\\left(y-3\right)^4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)

Vậy ................

b/ Ta thấy :

\(\left\{{}\begin{matrix}\left(x+y\right)^{2006}\ge0\\2000\left|y-1\right|\ge0\end{matrix}\right.\)

\(\left(x+y\right)^{2006}+2000\left|y-1\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^{2006}=0\\2000\left|y-1\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\\left|y-1\right|=0\end{matrix}\right.\)

+) \(\left|y-1\right|=0\)

\(\Leftrightarrow y-1=0\)

\(\Leftrightarrow y=1\)

\(x+y=0\)

\(\Leftrightarrow x=-1\)

Vậy ........

c/ Tương tự như b

30 tháng 9 2017

NX:\(\left(x-1\right)^4\ge0\forall x\)

\(\left(y-3\right)^4\ge0\forall y\)

\(\Rightarrow\left(x-1\right)^4+\left(y-3\right)^4\ge0\forall x,y\)

\(\Rightarrow\left(x-1\right)^4+\left(y-3\right)^4=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)

b)làm tương tự phần a:

NX :|y-1| \(\ge\)0 với mọi y

=> 2000|y-1|\(\ge\)0 với mọi y

(x+y)^2006\(\ge\)0 với mọi x

=> 2000|y-1|+ (x+y)^2006\(\ge\)0 với mọi x,y

=> 2000|y-1|+ (x+y)^2006=0

<=> \(\left\{{}\begin{matrix}x+y=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-y\\y=1\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

c) nhận xét |x-y-5| lớn hơn hoặc bằng 0 rồi làm tương tự

a: \(\left(x-1\right)^4+\left(y-3\right)^4=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)

b: \(\left(x+y\right)^{2006}+2000\left|y-1\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

c: \(\left|x-y-5\right|+\left(y+3\right)^{2000}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=5\\y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+5=-3+5=2\\y=-3\end{matrix}\right.\)

1 tháng 8 2017

Hơi tắt nhá

a) Đặt \(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|=A\)

\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x;y;z\)

mà A\(\le0\)

\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\)​ phải bằng 0 đê thỏa mãn điều kiện

\(\Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{9}{2}\right|=0\\\left|y+\dfrac{4}{3}\right|=0\\\left|z+\dfrac{7}{2}\right|=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{9}{2}\\y=-\dfrac{4}{3}\\z=-\dfrac{7}{2}\end{matrix}\right.\)

Vậy....

b;c)I hệt câu a nên làm tương tự nhá

d)

Hơi tắt nhá

a) Đặt \(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=B\)

B=\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\\\left|y-\dfrac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{4}\\y=\dfrac{1}{5}\\x+y+z=0\end{matrix}\right.\)

Thay ra ta tính đc :\(z=-\dfrac{11}{20}\)

Vậy....

1 tháng 8 2017

thanks bn nha