K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4

\(P\left(x\right)=x^{2023}-2022x^{2022}-2022x^{2021}-\dots-2022x^2-2022x+1\)

\(\Rightarrow P\left(2023\right)=2023^{2023}-2022\cdot2023^{2022}-2022\cdot2023^{2021}-\dots-2022\cdot2023^2-2022\cdot2023+1\)

\(=2023^{2023}-\left(2023-1\right)\cdot2023^{2022}-\left(2023-1\right)\cdot2023^{2021}-\dots-\left(2023-1\right)\cdot2023^2-\left(2023-1\right)\cdot2023+1\)

\(=2023^{2023}-2023^{2023}+2023^{2022}-2023^{2022}+2023^{2021}-\dots-2023^3+2023^2-2023^2+2023+1\)

\(=2024\)

___

Cách giải: Tách các hệ số để làm xuất hiện các lũy thừa của \(2023\)

29 tháng 4

 Ta thấy:    \(x=2023\Rightarrow x-1=2022\) 

Ta có:

\(P\left(x\right)=x^{2023}-\left(x-1\right)\times x^{2022}-\left(x-1\right)\times x^{2021}-...-\left(x-1\right)\times x^2-\left(x-1\right)\times x+1\)\(P\left(x\right)=x^{2023}-x^{2023}+x^{2022}-x^{2022}+x^{2021}-....-x^3+x^2-x^2+x+1\)

\(P\left(x\right)=x+1\)

Thay x=2023, ta có:

\(P\left(2023\right)=2023+1=2024\)

DD
9 tháng 6 2021

\(Q\left(x\right)=x^{101}-2020x^{100}-2022x^{99}+2022x^{98}+x-2021\)

\(=x^{100}\left(x-2021\right)+x^{99}\left(x-2021\right)-x^{98}\left(x-2021\right)+x^{98}+x-2021\)

\(Q\left(2021\right)=0+0-0+2021^{98}+0=2021^{98}\)

9 tháng 6 2021

Yêu cần bài là j bn

Đăng yêu cầu mik làm cho 

Học tốt

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

Các đa thức một biến là: a,b,d.

a) \( - 7x + 5\): biến của đa thức là x và bậc của đa thức là 1.

b) \(2021{x^2} - 2022x + 2023\): biến của đa thức là x và bậc của đa thức là 2

d) \( - 2{t^m} + 8{t^2} + t - 1\), với m là số tự nhiên lớn hơn 2: biến của đa thức là t và bậc của đa thức là m.

26 tháng 8 2021

\(M=\left(x^5-2021x^4\right)-\left(x^4-2021x^3\right)+\left(x^3-2021X^2\right)-\left(x^2-2021x\right)+\left(x-2021\right)-900=-900\)

Ta có: x=2021

nên x+1=2022

Ta có: \(M=x^5-2022x^4+2022x^3-2022x^2+2022x-2921\)

\(=x^5-x^4\left(x+1\right)+x^3\left(x+1\right)-x^2\left(x+1\right)+x\left(x+1\right)-2921\)

\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-2921\)

\(=x-2921=-900\)

10 tháng 2 2022

\(x^5-2022x^4+2020x^3+2020x^2-2020x-2021\)

=\(x^5-x^4-2021x^4+2021x^3-x^3+x^2+2021x^2-2021x+x-1-2020\)

=\(x^4\left(x-1\right)-2021x^3\left(x-1\right)-x^2\left(x+1\right)+2021x\left(x-1\right)+\left(x-1\right)-2020\)

=\(\left(x^4-2021x^3-x^2+2021x+1\right).\left(x-1\right)-2020\)

=\(\left[x^3\left(x-2021\right)-x\left(x-2021\right)+1\right]\left(x-1\right)-2020\)

=\(\left[\left(x^3-x\right).\left(x-2021\right)+1\right]\left(x-1\right)-2020\)*

vì x-2021 luôn bằng 0 \(\Rightarrow\left[\left(x^3-x\right).0+1\right]=1\)

*=1.(2021-1)-2020=0

đây nha bạn //

AH
Akai Haruma
Giáo viên
2 tháng 1

Lời giải:
$M=\frac{2022x-2021}{3x+2}=\frac{674(3x+2)-3369}{3x+2}$

$=674-\frac{3369}{3x+2}$

Để $M$ nhỏ nhất thì $\frac{3369}{3x+2}$ lớn nhất

Điều này xảy ra khi $3x+2$ là số nguyên dương nhỏ nhất.

Với $x$ nguyên thì $3x+2$ là số nguyên dương nhỏ nhất khi $3x+2=2$

$\Leftrightarrow x=0$

9 tháng 11 2021

cho hai số x,y thỏa mãn x+y=x.y=x/y, với y khác 0. Tính giá trị biểu thức P=2022x+2021y - Hoc24

9 tháng 11 2021

\(ĐK:y\ne0\)

\(x+y=\dfrac{x}{y}\Leftrightarrow xy+y^2=x\)

Mà \(xy=x+y\Leftrightarrow x+y+y^2=x\)

\(\Leftrightarrow y\left(y+1\right)=0\Leftrightarrow y=-1\left(y\ne0\right)\\ \Leftrightarrow x-1=\dfrac{x}{-1}=-x\\ \Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(P=2022\cdot\dfrac{1}{2}+2021\left(-1\right)=1011-2021=-1010\)