K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2017

Ta có \(P\left(1\right)=1^2+2m+m^2\)

\(Q\left(-1\right)=1-2m-1-1+m^2=m^2-2m-1\)

\(\Rightarrow m^2+2m+1=m^2-2m-1\Rightarrow4m=-2\Rightarrow m=-\frac{1}{2}\)

Vậy \(m=-\frac{1}{2}\)thì \(P\left(1\right)=Q\left(-1\right)\)

Ta có : \(x^2-2\left(m-1\right)x+2m-5=0\left(a=1;b=-2m+2;c=2m-5\right)\)

a, Để pt có 2 nghiệm phân biệt thì \(\Delta>0\)hay 

\(\left(-2m+2\right)^2-4\left(2m-5\right)=4m^2+4-8m+20=4m^2-8m+24>0\)

b, Theo hệ thức Vi et ta có : \(x_1+x_2=2m-2;x_1x_2=2m-5\)

Theo bài ra ta có : mk để \(x_1;x_2\)lần lượt là \(a;b\)nhé 

\(\left(a^2-2ma-b+2m-3\right)\left(b^2-2mb-a+2m-3\right)=19\)

Do a;b là nghiệm nên a;b thỏa mãn pt đã cho nghĩa : \(\hept{\begin{cases}a^2-2\left(m-1\right)a+2m-5=0\\a^2-2\left(m-1\right)b+2m-5=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-2a+2\\-2b+2\end{cases}}\)Thay vào pt trên ta đc : \(\left(-2a+2\right)\left(-2b+2\right)=19\)

\(\Leftrightarrow4ab+2a^2-4a+2b^2+ab-2b-4b-2a+4=19\)

\(\Leftrightarrow2\left(a+b\right)^2-6\left(a+b\right)+ab=15\) Thay vào ta lại có pt mới : 

\(2\left(2m-2\right)^2-6\left(2m-2\right)+2m-5=15\)

\(\Leftrightarrow2\left(4m-4\right)-12m+12+2m-5-15=0\)

\(\Leftrightarrow8m-8-12m+2m+12-5-15=0\)

\(\Leftrightarrow-2m-16=0\Leftrightarrow-2m=16\Leftrightarrow m=-8\)

6 tháng 8 2017

\(\Delta\)' = (m+1)2-2m+5 = m2 +2m +1 - 2m +5 =m2 +6 >0 nên pt đã cho luôn có 2 nghiệm x1,x2 phân biệt với mọi m .

Ta có : (x12 -2mx1+2m-1)(x22 -2mx2 +2m+1)<0 (*)

Vì x1,x2 là nghiệm của phương trình 1 nên ta có :

x12 -2mx1+2x1 +2m -5 = 0 => x12 -2mx1+2m-1 +2x1 -4 =0

=>x12 -2mx1+2m-1 = 4-2x1 Tương tự ta có : x22 -2mx2+2m-1 = 4-2x2

khi đó (*) trở thành : (4-2x1)(4-2x2) <0 =>16-8x2-8x1+4x1x2 < 0

<=> 16-8(x1+x2)+4x1x2 <0

vì phương trình đầu luôn có 2 nghiệm phân biệt với mọi m nên theo hệ thức viét ta có :\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)thay vào bất pt trên ta đc :

16-8.2(m-1)+4(2m-5)<0 => 16-16m+16+8m-20<0

12-8m<0 => m>\(\dfrac{3}{2}\)

Vậy m>\(\dfrac{3}{2}\)thì có 2 nghiệm x1 x2 thỏa mãn đề bài .

21 tháng 5 2016

a) \(x^2-2mx+2m^2-m=0\)

\(\Delta'=m^2-\left(2m^2-m\right)=-m^2+m\)

Để pt có 2 nghiệm phân biệt thì \(\Delta'=-m^2+m>0\Leftrightarrow0< m< 1\)

Vậy : ...........

b) Bạn xem lại đề bài nhé, mình thấy không ổn.

21 tháng 5 2016

mình bổ sung thêm câu b) ... đạt GTNN

NV
7 tháng 7 2020

\(\Delta'=\left(m-1\right)^2-\left(2m-5\right)=\left(m-2\right)^2+2>0;\forall m\)

Phương trình luôn có 2 nghiệm phân biệt với mọi m

Do \(x_1;x_2\) là nghiệm của pt nên: \(\left\{{}\begin{matrix}x_1^2-2\left(m-1\right)x_1+2m-5=0\\x_2^2-2\left(m-1\right)x_2+2m-5=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1^2-2mx_1=-2x_1-2m+5\\x_2^2-2mx_2=-2x_2-2m+5\end{matrix}\right.\)

Thay vào bài toán:

\(\left(-2x_1-2m+5-x_2+2m-3\right)\left(-2x_1-2m+5-x_1+2m-3\right)=19\)

\(\Leftrightarrow\left(-2x_1-x_2+2\right)\left(-2x_2-x_1+2\right)=19\)

\(\Leftrightarrow2\left(x_1+x_2\right)^2-6\left(x_1+x_2\right)+x_1x_2-15=0\)

\(\Leftrightarrow8\left(m-1\right)^2-12\left(m-1\right)+2m-20=0\)

\(\Leftrightarrow4m^2-13m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=\frac{13}{4}\end{matrix}\right.\)

7 tháng 7 2020

e cảm ơn ạ

17 tháng 2 2019

a) thay x=2 vào PT (a) ta được:

\(4+4m-m^2+m-3=0\Leftrightarrow-m^2+5m+1=0\\ \)

\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{5+\sqrt{29}}{2}\\m=\dfrac{5-\sqrt{29}}{2}\end{matrix}\right.\)

gọi x=x1=2, x2 là nghiệm còn lại.

theo viet x1+x2 =-2m.

=> x2=-2m-2

* \(m=\dfrac{5+\sqrt{29}}{2}.\\\Rightarrow x2=-\sqrt{29}-5-2=-7-\sqrt{29}\)

*\(m=\dfrac{5-\sqrt{29}}{2}\\ \Rightarrow x2=\sqrt{29}-5-2=-7+\sqrt{29}\)

vậy ....

câu b) bạn có thể làm tương tự

17 tháng 2 2019

c) ta có: a=1;

\(\Delta=\left(m-2\right)^2-4\left(1-m\right)=m^2\);

*\(x=\dfrac{-b+\sqrt{\Delta}}{2a}=2018+\sqrt{2019}\\ \Leftrightarrow-\left(m-2\right)+\left|m\right|=4036+2\sqrt{2019}\)

<=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}m>0\\-m+2+m=4036+2\sqrt{2019}\left(VN\right)\end{matrix}\right.\\\left\{{}\begin{matrix}m< 0\\-m+2-m=4036+2\sqrt{2019}\end{matrix}\right.\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}m< 0\\m=-2017-\sqrt{2019}\end{matrix}\right.\)<=>\(m=-2017-\sqrt{2019}\)

* \(x=\dfrac{-b-\sqrt{\Delta}}{2a}\) (xét tương tự => vô nghiệm).

vậy \(m=-2017-\sqrt{2019}\)

6 tháng 4 2017

Để PT có 2 nghiệm phân biệt thì

∆ = (2m - 1)2 - 4(m2 - 1)\(\ge0\)

\(\Leftrightarrow m\le\dfrac{5}{4}\)

Vì x1 là nghiệm nên

\(\Leftrightarrow x^2_1-\left(2m-1\right)x_1+m^2-1=0\)

\(\Leftrightarrow x^2_1-2mx_1+m^2=x_1+1\)

Thế vào ta dược

\(\left(x^2_1-2mx_1+m^2\right)\left(x_2+1\right)=1\)

\(\Leftrightarrow\left(x_1+1\right)\left(x_2+1\right)=1\)

\(\Leftrightarrow x_1x_2+\left(x_1+x_2\right)=0\)

Thế vô giải tiếp sẽ ra

6 tháng 4 2017

\(\Delta=\left(2m+1\right)^2-4\left(m^2-1\right)\)chứ

NV
7 tháng 2 2020

1/ Với \(m=1\) pt có nghiệm duy nhất \(x=3\)

Với \(m\ne1\Rightarrow\Delta'=m^2-\left(m-1\right)\left(m-7\right)=8m-7\)

- Với \(m=\frac{7}{8}\) pt có nghiệm kép \(x=7\)

- Với \(m< \frac{7}{8}\) pt vô nghiệm

- Với \(\left\{{}\begin{matrix}m>\frac{7}{8}\\m\ne1\end{matrix}\right.\) pt có 2 nghiệm pt \(x_{1;2}=\frac{-m\pm\sqrt{8m-7}}{m-1}\)

NV
7 tháng 2 2020

2/ Ý a dễ, bạn tự làm

b/ Với \(m=0\Rightarrow x=-2\)

Với \(m\ne0\Rightarrow\Delta=\left(2m+1\right)^2-4m\left(m+2\right)=1-4m\)

- Với \(m=\frac{1}{4}\) pt có nghiệm kép \(x=1\)

- Với \(m>\frac{1}{4}\) pt vô nghiệm

- Với \(m< \frac{1}{4}\) pt có 2 nghiệm pb \(x_{1;2}=\frac{-2m-1\pm\sqrt{1-4m}}{2m}\)