K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2018

Cũng tương tự thôi c. Những hằng đẳng thức đáng nhớ

15 tháng 10 2018

x3 + y3 + z3 - 3xyz = ( x3 + y3) + z3 - 3xyz

= ( x + y)3 - 3xy(x + y) + z3 - 3xyz = (x + y)3 + z3 - 3xy( x + y) - 3xyz

= (x + y)3 + z3 - 3xy(x + y + z)

= ( x + y + z )\(\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]\) - 3xy( x + y + z )

= ( x + y + z )( x2 + 2xy + y2 - xz - yz + z2 ) - 3xy( x + y + z )

= ( x + y + z )( x2 + 2xy + y2 - xz - yz + z2 - 3xy )

= ( x + y + z )( x2 + y2 + z2 - xy - xz - yz )

13 tháng 2 2018

Bài 2:

a)   Đặt:  x - y =a;   y - z = b;    z - x = c   thì   a + b + c = 0

C/M: đẳng thức phụ:   a3 + b3 + c= 3abc

Ta có: \(a+b+c=0\)

\(\Rightarrow\)\(a+b=-c\)

\(\Rightarrow\)\(\left(a+b\right)^3=-c^3\)

\(\Rightarrow\)\(a^3+b^3+c^3=a^3+b^3-\left(a+b\right)^3=3abc\)

Vậy   \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\)

21 tháng 6 2019

\(\left(x^2-6x\right)^2-2\left(x-3\right)^2-81=\left[\left(x^2-6x\right)^2-81\right]-2\left(x-3\right)^2=\left[\left(x^2-6x\right)^2-9^2\right]-2\left(x-3\right)^2=\left(x^2-6x+9\right)\left(x^2-6x-9\right)-2\left(x-3\right)^2=\left(x-3\right)^2\left(x^2-6x-9\right)-2\left(x-3\right)^2=\left(x-3\right)^2\left(x^2-6x+11\right)\)

21 tháng 6 2019

=\(\left(x-3\right)^2\left(x^2-6x-11\right)\)

nha

15 tháng 9 2019

a ) \(\frac{1}{\left(x-y\right)\left(y-z\right)}+\frac{1}{\left(y-z\right)\left(z-x\right)}+\frac{1}{\left(z-x\right)\left(x-y\right)}\)

     = \(\frac{z-x}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}+\frac{x-y}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}+\frac{y-z}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

    = \(\frac{z-x+x-y+y-z}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=0\)

b ) \(\frac{4}{\left(y-x\right)\left(z-x\right)}+\frac{3}{\left(y-x\right)\left(y-z\right)}+\frac{3}{\left(y-z\right)\left(x-z\right)}\)

 = \(\frac{-4}{\left(y-x\right)\left(x-z\right)}+\frac{3}{\left(y-x\right)\left(y-z\right)}+\frac{3}{\left(y-z\right)\left(x-z\right)}\)

\(\frac{-4\left(y-z\right)}{\left(x-z\right)\left(y-z\right)\left(y-x\right)}+\frac{3\left(x-z\right)}{\left(x-z\right)\left(y-z\right)\left(y-x\right)}+\frac{3\left(y-x\right)}{\left(x-z\right)\left(y-z\right)\left(y-x\right)}\)

\(\frac{-4y+4z+3x-3z+3y-3x}{\left(x-z\right)\left(y-z\right)\left(y-x\right)}=\frac{z-y}{\left(x-z\right)\left(y-z\right)\left(y-x\right)}\)

\(\frac{-\left(y-x\right)}{\left(x-z\right)\left(y-z\right)\left(y-x\right)}=\frac{-1}{\left(x-z\right)\left(y-z\right)}=\frac{1}{\left(x-z\right)\left(x-y\right)}\)

Chúc bạn học tốt !!!

15 tháng 10 2019

x^3+y^3+z^3+3(x+y)(y+z)(z+x)-x^3-y^3-z^3=3(x+y)(y+z)(z+x)

15 tháng 10 2019

tích di