Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. (-2x - 1)(x2 - x - 3) - (x + 2)(x + 1)2
= -2x3 + 2x2 + 6x - x2 + x + 3 - (x + 2)(x2 + 2x + 1)
= -2x3 + x2 + 7x + 3 - x3 - 2x2 - x - 2x2 - 2x - 2
= -3x3 - 3x2 + 4x + 1
2. (x + 2)(x - 1) - (x - 3)(x + 2) = 3
=> (x + 2)(x - 1 - x + 3) = 3
=> (x + 2).0 = 3
...(xem lại đề)
\(\left(x+2\right)\left(x-1\right)-\left(x-3\right)\left(x+2\right)=3\)
\(\Leftrightarrow\left(x+2\right)\left(x-1-x+3\right)=3\)
\(\Leftrightarrow2\left(x+2\right)=3\)
\(\Leftrightarrow x+2=\frac{3}{2}\)
\(\Leftrightarrow x=\frac{3}{2}-2\)
\(\Leftrightarrow x=-\frac{1}{2}\)
\(5x\left(x-3\right)=x-3\)
\(\Rightarrow5x\left(x-3\right)-\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(5x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\5x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{1}{5}\end{cases}}}\)
\(x^3-3x^2=0\)
\(\Leftrightarrow x^2\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
khỉ nghĩ như này..
x3-3x2=0
(=)x2 (x-3)=0
(=)x2=0,hoac x-3=0
(=)x=3
Bài làm:
a) \(4x\left(x+2\right)=4x^2-24\)
\(\Leftrightarrow4x^2+8x=4x^2-24\)
\(\Leftrightarrow8x=-24\)
\(\Leftrightarrow x=-3\)
Vậy tập nghiệm của phương trình \(S=\left\{-3\right\}\)
b) \(\frac{x-2}{3}< \frac{8x-5}{9}\)
\(\Leftrightarrow\frac{3\left(x-2\right)}{9}< \frac{8x-5}{9}\)
\(\Leftrightarrow3x-6< 8x-5\)
\(\Leftrightarrow-5x< 1\)
\(\Leftrightarrow x>-\frac{1}{5}\)
Vậy \(x>-\frac{1}{5}\)
c) đkxđ: \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\\x^2-4\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}}\)
Ta có: \(\frac{3}{x-2}+\frac{2}{x+2}=\frac{2x+5}{x^2-4}\)
\(\Leftrightarrow\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2x+5}{\left(x-2\right)\left(x+2\right)}\)
\(\Rightarrow3\left(x+2\right)+2\left(x-2\right)=2x+5\)
\(\Leftrightarrow3x+6+2x-4=2x+5\)
\(\Leftrightarrow3x=3\)
\(\Leftrightarrow x=1\left(tm\right)\)
Vậy tập nghiệm của phương trình \(S=\left\{1\right\}\)
Học tốt!!!!
\(x^3+5x^2-6x\)
\(=x^3+6x^2-x^2-6x\)
\(=x^2.\left(x+6\right)-x.\left(x+6\right)\)
\(=\left(x^2-x\right).\left(x+6\right)\)
\(x^3+5x^2-6x\)
\(=x\left(x^2+5x-6\right)\)
\(=x\left(x^2+6x-x-6\right)\)
\(=x\left[x\left(x+6\right)-\left(x+6\right)\right]\)
\(=x\left(x+6\right)\left(x-1\right)\)
a)\(2x\left(x-2016\right)-2x+4032=0\)
\(\Leftrightarrow2x\left(x-2016\right)-2\left(x-2016\right)=0\)
\(\Leftrightarrow\left(2x-2\right)\left(x-2016\right)=0\)
\(\Leftrightarrow2\left(x-1\right)\left(x-2016\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x-2016=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=2016\end{array}\right.\)
b)\(5x\left(x-3\right)=x-3\)
\(\Leftrightarrow5x\left(x-3\right)-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-3=0\\5x-1=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\x=\frac{1}{5}\end{array}\right.\)
c)\(\left(3x-1\right)^2=\left(x+2\right)^2\)
\(\Leftrightarrow\left(3x-1\right)^2-\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(3x-1+x+2\right)\left[\left(3x-1\right)-\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(4x+1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}4x+1=0\\2x-3=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{4}\\x=\frac{3}{2}\end{array}\right.\)
\(\dfrac{x+2}{x-2}-\dfrac{x-2}{x+2}=\dfrac{10}{-x^2+4}\)
\(\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)^2=-10\)
\(\Leftrightarrow x^2+4x+4-x^2+4x-4=-10\)
=>8x=-10
hay x=-5/4
`(x^{2}-y^{2})^{2}`
`=(x^{2})^{2}-2.x^{2}.y^{2}+(y^{2})^{2}`
`=x^{4}-2x^{2}y^{2}+y^{4}`