K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2019

1,\(2x\left(x-5\right)-\left(x-2\right)^2-\left(x+3\right)\left(x-3\right)\)

\(=2x^2-10x-x^2+4x-4-x^2+9\)

\(=\left(2x^2-x^2-x^2\right)+\left(-10x+4x\right)+\left(-4+9\right)\)

\(=-6x+5\)

2,\(\left(x+1\right)^2-3\left(x-5\right)\left(x+5\right)-\left(2x-1\right)^2\)

\(=x^2+2x+1-3\left(x^2-25\right)-\left(4x^2-4x+1\right)\)

\(=x^2+2x+1-3x^2+75-4x^2+4x-1\)

\(=-6x^2+6x+75\)

3,\(\left(x-1\right)^3-\left(x-3\right)\left(x^2+3x+9\right)\)

\(=\left(x-1\right)^3-\left(x^3-27\right)\)

\(=x^3-3x^2+3x-1-x^3+27\)

\(=-3x^2+3x+26\)

4,\(\left(x+5\right)\left(x^2-5x+25\right)-\left(x+2\right)^3\)

\(=\left(x^3+125\right)-\left(x^3+6x^2+12x+8\right)\)

\(=x^3+125-x^3-6x^2-12x-8\)

\(=-6x^2-12x+117\)

5,\(2x\left(x-7\right)-\left(x+3\right)\left(x-2\right)^2+\left(x+1\right)^2\)

\(=2x^2-14x-\left(x+3\right)\left(x^2-4x+4\right)+x^2+2x+1\)

=\(2x^2-14x-x^3+4x^2-4x-3x^2+12x-12+x^2+2x+1\)

\(=-x^3+4x^2-4x+1\)

6,\(\left(2x+5\right)\left(x-3\right)-\left(x+5\right)\left(x-1\right)-\left(x-4\right)^2\)

\(=2x^2-6x+5x-15-x^2+x-5x+5-x^2+8x-16\)

\(=3x-26\)

7,\(\left(x+5\right)\left(x-5\right)\left(x+2\right)-\left(x+2\right)^3\)

=\(\left(x^2-25\right)\left(x+2\right)-x^3-6x^2-12x-8\)

\(=x^3+2x^2-25x-50-x^3-6x^2-12x-8\)

\(=-4x^2-27x-58\)

Nếu đúng thì tick cho mk nha ^_^

21 tháng 7 2016

ít thôi bạn ạ

21 tháng 7 2016

Bạn làm được câu nào thì làm.

30 tháng 9 2019

cái dell gì zợ????????????

a: \(VT=x^2-25-x^2+4x-4-7x^2+x^3+1\)

\(=x^3-7x^2+4x-28\)

\(VP=x^3+9x^2+27x+27-x^3-9x^2=27x+27\)

=>\(x^3-7x^2-23x-55=0\)

=>\(x\in\left\{9.89\right\}\)

b: \(\Leftrightarrow4x^2+12x+9+x^2-1-5x^2-20x-20=-\left(x^2-4x-5\right)+x^2+8x+16\)

=>\(-8x-12=-x^2+4x+5+x^2+8x+16\)

=>-8x-12=12x+21

=>-20x=33

=>x=-33/20

a) Điều kiện xác định của phương trình x – 1 ≥ 0 hay x ≥ 1

Đưa phương trình về dạng tương đương: x = 2 thỏa mãn x ≥ 1. Vậy tập nghiệm là {2}.

b) Điều kiện xác định của phương trình: x - 1 > 0 ⇔ x≥ 1

Đưa phương trình về dạng tương đương, ta có: x = 1/2 < 1

Suy ra phương trình vô nghiệm.

c) x = 6

d) Phương trình vô nghiệm

7 tháng 8 2020

a) Điều kiện xác định của phương trình x – 1 ≥ 0 hay x ≥ 1

Đưa phương trình về dạng tương đương: x = 2 thỏa mãn x ≥ 1. Vậy tập nghiệm là {2}.

b) Điều kiện xác định của phương trình: x - 1 > 0 ⇔ x≥ 1

Đưa phương trình về dạng tương đương, ta có: x = 1/2 < 1

Suy ra phương trình vô nghiệm.

c) x = 6

d) Phương trình vô nghiệm

a: \(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\)

=>1+3x-6=3-x

=>3x-5=3-x

=>4x=8

hay x=2(loại)

b: \(\Leftrightarrow8-x-8\left(x-7\right)=-26\)

=>8-x-8x+56=-26

=>-9x+64=-26

=>-9x=-90

hay x=10(nhận)

c: \(\dfrac{1}{x-2}+\dfrac{1}{x-3}=\dfrac{2}{x-1}\)

\(\Leftrightarrow\dfrac{x-3+x-2}{\left(x-2\right)\left(x-3\right)}=\dfrac{2}{x-1}\)

\(\Leftrightarrow\left(x-1\right)\left(2x-5\right)=2\left(x^2-5x+6\right)\)

\(\Leftrightarrow2x^2-5x-2x+5=2x^2-10x+12\)

=>-7x+10x=12-5

=>3x=7

hay x=7/3(nhận)

30 tháng 11 2016

\(2x^2-7x+5=0\)

\(2x^2-2x-5x+5=0\)

\(2x\left(x-1\right)-5\left(x-1\right)=0\)

\(\left(x-1\right)\left(2x-5\right)=0\)

\(\left[\begin{array}{nghiempt}x-1=0\\2x-5=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=1\\2x=5\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=1\\x=\frac{5}{2}\end{array}\right.\)

\(x\left(2x-5\right)-4x+10=0\)

\(x\left(2x-5\right)-2\left(2x-5\right)=0\)

\(\left(2x-5\right)\left(x-2\right)=0\)

\(\left[\begin{array}{nghiempt}x-2=0\\2x-5=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=2\\2x=5\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=2\\x=\frac{5}{2}\end{array}\right.\)

\(\left(x-5\right)\left(x+5\right)-x\left(x-2\right)=15\)

\(x^2-25-x^2+2x=15\)

\(2x=15+25\)

\(2x=40\)

\(x=\frac{40}{2}\)

\(x=20\)

\(x^2\left(2x-3\right)-12+8x=0\)

\(x^2\left(2x-3\right)+4\left(2x-3\right)=0\)

\(\left(2x-3\right)\left(x^2+4\right)=0\)

\(2x-3=0\) (vì \(x^2\ge0\Rightarrow x^2+4\ge4>0\))

\(2x=3\)

\(x=\frac{3}{2}\)

\(x\left(x-1\right)+5x-5=0\)

\(x\left(x-1\right)+5\left(x-1\right)=0\)

\(\left(x-1\right)\left(x+5\right)=0\)

\(\left[\begin{array}{nghiempt}x-1=0\\x+5=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=1\\x=-5\end{array}\right.\)

\(\left(2x-3\right)^2-4x\left(x-1\right)=5\)

\(4x^2-12x+9-4x^2+4x=5\)

\(-8x=5-9\)

\(-8x=-4\)

\(x=\frac{4}{8}\)

\(x=\frac{1}{2}\)

\(x\left(5-2x\right)+2x\left(x-1\right)=13\)

\(5x-2x^2+2x^2-2x=13\)

\(3x=13\)

\(x=\frac{13}{3}\)

\(2\left(x+5\right)\left(2x-5\right)+\left(x-1\right)\left(5-2x\right)=0\)

\(\left(2x+10\right)\left(2x-5\right)-\left(x-1\right)\left(2x-5\right)=0\)

\(\left(2x-5\right)\left(2x+10-x+1\right)=0\)

\(\left(2x-5\right)\left(x+11\right)=0\)

\(\left[\begin{array}{nghiempt}2x-5=0\\x+11=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}2x=5\\x=-11\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-11\end{array}\right.\)

30 tháng 11 2016

Cảm ơn

 

22 tháng 9 2020

a) ( x + 2 )( x + 3 ) - ( x - 2 )( x + 5 )

= x2 + 5x + 6 - ( x2 + 3x - 10 )

= x2 + 5x + 6 - x2 - 3x + 10

= 2x + 16

b) ( 8 - 5x )( x + 2 ) + 4( x - 2 )( x + 1 ) + 2( x - 2 )( x + 2 ) + 10

= -5x2 - 2x + 16 + 4( x2 - x - 2 ) + 2( x2 - 4 ) + 10

= -5x2 - 2x + 16 + 4x2 - 4x - 8 + 2x2 - 8 + 10

= x2 - 6x + 10

c) 4( x - 1 )( x + 5 ) - ( x + 2 )( x + 5 ) - 3( x - 1 )( x + 2 )

= 4( x2 + 4x - 5 ) - ( x2 + 7x + 10 ) - 3( x2 + x - 2 )

= 4x2 + 16x - 20 - x2 - 7x - 10 - 3x2 - 3x + 6

= 6x - 24

d) ( x - 1 )( x5 + x4 + x3 + x2 + x + 1 )

= x6 + x5 + x4 + x3 + x2 + x - x5 - x4 - x3 - x2 - x - 1

= x6 - 1

20 tháng 12 2020

1, \(45+x^3-5x^2-9x=9\left(5-x\right)+x^2\left(x-5\right)\)

\(=\left(9-x^2\right)\left(x-5\right)=\left(3-x\right)\left(x+3\right)\left(x-5\right)\)

3, \(x^4-5x^2+4\)

Đặt \(x^2=t\left(t\ge0\right)\)ta có : 

\(t^2-5t+4=t^2-t-4t+4=t\left(t-1\right)-4\left(t-1\right)\)

\(=\left(t-4\right)\left(t-1\right)=\left(x^2-4\right)\left(x^2-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)

29 tháng 3 2022

`Answer:`

1. `45+x^3-5x^2-9x`

`=x^3+3x^2-8x^2-24x+15x+45x`

`=x^2 .(x+3)-8x.(x+3)+15.(x+3)`

`=(x+3).(x^2-8x+15)`

`=(x+3).(x^2-5x-3x+15)`

`=(x-3).(x-5).(x-3)`

2. `x^4-2x^3-2x^2-2x-3`

`=x^4+x^3-3x^3+x^2+x-3x-3`

`=x^3 .(x+1)-3x^2 .(x+1)+x.(x+1)-3.(x+1)`

`=(x+1).(x^3-3x^2+x-3)`

`=(x+1).[x^3 .(x-3).(x-3)]`

`=(x+1).(x-3).(x^2+1)`

3. `x^4-5x^2+4`

`=x^4-x^2-4x^2+4`

`=x^2 .(x^2-1)-4.(x^2-1)`

`=(x^2-1).(x^2-4)`

`=(x-1).(x+1).(x-2).(x+2)`

4. `x^4+64`

`=x^4+16x^2+64-16x^2`

`=(x^2+8)^2-16x^2`

`=(x^2+8-4x).(x^2+8+4x)`

5. `x^5+x^4+1`

`=x^5+x^4+x^3-x^3+1`

`=x^3 .(x^2+x+1)-(x^3-1)`

`=x^3 .(x^2+x+1)-(x-1).(x^2+x+1)`

`=(x^2+x+1).(x^3-x+1)`

6. `(x^2+2x).(x^2+2x+4)+3`

`=(x^2+2x)^2+4.(x^2+2x)+3`

`=(x^2+2x)^2+x^2+2x+3.(x^2+2x)+3`

`=(x^2+2x+1).(x^2+2x)+3.(x^2+2x+1)`

`=(x^2+2x+1).(x^2+2x+3)`

`=(x+1)^2 .(x^2+2x+3)`

7. `(x^3+4x+8)^2+3x.(x^2+4x+8)+2x^2`

`=x^6+8x^4+16x^3+16x^2+64x+64+3x^3+12x^2+24x+2x^2`

`=x^6+8x^4+19x^3+30x^2+88x+64`

8. `x^3 .(x^2-7)^2-36x`

`=x[x^2.(x^2-7)^2-36]`

`=x[(x^3-7x)^2-6^2]`

`=x.(x^3-7x-6).(x^3-7x+6)`

`=x.(x^3-6x-x-6).(x^3-x-6x+6)`

`=x.[x.(x^2-1)-6.(x+1)].[x.(x^2-1)-6.(x-1)]`

`=x.(x+1).[x.(x-1)-6].(x-1).[x.(x+1)-6]`

`=x.(x+1).(x-1).(x^2-3x+2x-6).(x^2+3x-2x-6)`

`=x.(x+1).(x-1).[x.(x-3)+2.(x-3)].[x.(x+3)-2.(x+3)]`

`=x.(x+1)(x-1).(x-2).(x+2).(x-3).(x+3)`

9. `x^5+x+1`

`=x^5-x^2+x^2+x+1`

`=x^2 .(x^3-1)+(x^2+x+1)`

`=x^2 .(x-1).(x^2+x+1)+(x^2+x+1)`

`=(x^2+x+1).(x^3-x^2+1)`

10. `x^8+x^4+1`

`=[(x^4)^2+2x^4+1]-x^4`

`=(x^4+1)^2-(x^2)^2`

`=(x^4-x^2+1).(x^4+x^2+1)`

`=[(x^4+2x^2+1)-x^2].(x^4-x^2+1)`

`=[(x^2+1)^2-x^2].(x^4-x^2+1)`

`=(x^2-x+1).(x^2+x+1).(x^4-x^2+1)

11. ` x^5-x^4-x^3-x^2-x-2`

`=x^5-2x^4+x^4-2x^3+x^3-2x^2+x^2-2x+x-2`

`=x^4 .(x-2)+x^3 ,(x-2)+x^2 .(x-2)+x.(x-2)+(x-2)`

`=(x-2).(x^4+x^3+x^2+x+1)`

12. `x^9-x^7-x^6-x^5+x^4+x^3+x^2-1`

`=(x^9-x^7)-(x^6-x^4)-(x^5-x^3)+(x^2-1)`

`=x^7 .(x^2-1)-x^4 .(x^2-1)-x^3 .(x^2-1)+(x^2-1)`

`=(x^2-1).(x^7-x^4-x^3+1)`

`=(x-1)(x+1)(x^3-1)(x^4-1)`

`=(x-1)(x+1)(x^2+x+1)(x-1)(x^2-1)(x^2+1)`

`=(x-1)^2 .(x+1)(x^2+x+1)(x-1)(x+1)(x^2+1)`

`=(x-1)^3 .(x+1)^2 .(x^2+x+1)(x^2+1)`

13. `(x^2-x)^2-12(x^2-x)+24`

`=[ (x^2-x)^2-2.6(x^2-x)+6^2]-12`

`=(x^2-x+6)^2-12`

`=(x^2-x+6-\sqrt{12})(x^2-x+6+\sqrt{12})`