Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(2\left(x+3\right)\left(x-4\right)=\left(2x-1\right)\left(x+2\right)-27\)
\(\Leftrightarrow2\left(x^2-4x+3x-12\right)=2x^2+4x-x-2-27\)
\(\Leftrightarrow2x^2-2x-24=2x^2+3x-29\Leftrightarrow-5x+5=0\Leftrightarrow x=1\)
b, \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x-3\right)\left(x+3\right)=26\)
\(\Leftrightarrow x^3-8-x\left(x^2-9\right)=26\Leftrightarrow-8+9x=26\)
\(\Leftrightarrow9x=18\Leftrightarrow x=2\)
a) \(4\left(x+3\right)^2=\left(2x+6\right)^2\)
\(\Leftrightarrow2^2\left(x+3\right)^2=\left(2x+6\right)^2\)
\(\Leftrightarrow\left(2x+6\right)^2=\left(2x+6\right)^2\)
Vậy tập nghiệm của phương trình là \(S=ℝ\)
b) \(\left(3x+4\right)^2=4\left(x+3\right)\)
\(\Leftrightarrow9x^2+24x+16=4x+12\)
\(\Leftrightarrow9x^2+20x+4=0\)
\(\Leftrightarrow\left(9x+2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}9x+2=0\\x+2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{9}\\x=-2\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{2}{9};-2\right\}\)
c) \(\left(6x+3\right)^2=\left(x-4\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}6x+3=x-4\\6x+3=4-x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x+7=0\\7x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{7}{5}\\x=\frac{1}{7}\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{7}{5};\frac{1}{7}\right\}\)
d) \(\left(x^2+3x+2\right)\left(x^2+3x+3\right)-2=0\)
Đặt \(t=x^2+3x+2\), ta có :
\(t\left(t+1\right)-2=0\)
\(\Leftrightarrow t^2+t-2=0\)
\(\Leftrightarrow\left(t+2\right)\left(t-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+2=0\\t-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+3x+4=0\\x^2+3x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{3}{2}\right)^2+\frac{7}{4}=0\left(ktm\right)\\\left(x+\frac{3}{2}\right)^2-1,25=0\left(tm\right)\end{cases}}\)
\(\Leftrightarrow x=\pm\sqrt{1,25}-\frac{3}{2}=-\frac{3\pm\sqrt{5}}{2}\)(tm)
Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{3\pm\sqrt{5}}{2}\right\}\)
e)Đề bài sai ! Mik sửa :
\(\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24=0\)
Đặt \(t=x^2-5x\), ta có :
\(t^2+10t-24=0\)
\(\Leftrightarrow\left(t+12\right)\left(t-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+12=0\\t-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-5x+12=0\\x^2-5x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-\frac{5}{2}\right)^2+\frac{23}{4}=0\left(ktm\right)\\\left(x-\frac{5}{2}\right)^2-\frac{33}{4}=0\left(tm\right)\end{cases}}\)
\(\Leftrightarrow x=\pm\frac{\sqrt{33}}{2}+\frac{5}{2}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{\sqrt{33}}{2}+\frac{5}{2};-\frac{\sqrt{33}}{2}+\frac{5}{2}\right\}\)
f) \(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+x+2\right)-12=0\)
Đặt \(t=x^2+x+1\), ta có :
\(t\left(t+1\right)-12=0\)
\(\Leftrightarrow t^2+t-12=0\)
\(\Leftrightarrow\left(t+4\right)\left(t-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+x+5=0\\x^2+x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{19}{4}=0\left(ktm\right)\\\left(x+\frac{1}{2}\right)^2-\frac{9}{4}=0\left(tm\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}-\frac{1}{2}=1\left(tm\right)\\x=-\frac{3}{2}-\frac{1}{2}=-2\left(tm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;-2\right\}\)
g) \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)
Đặt \(t=x^2+x\), ta có :
\(t\left(t-2\right)-24=0\)
\(\Leftrightarrow t^2-2t-24=0\)
\(\Leftrightarrow\left(t+4\right)\left(t-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t-6=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+x+4=0\\x^2+x-6=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\\\left(x+\frac{1}{2}\right)^2-\frac{25}{4}=0\left(tm\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}-\frac{1}{2}=2\left(tm\right)\\x=-\frac{5}{2}-\frac{1}{2}=-3\left(tm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{2;-3\right\}\)
h) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)
Đặt \(t=x^2+5x+4\), ta có :
\(t\left(t+2\right)-24=0\)
\(\Leftrightarrow t^2+2t-24=0\)
\(\Leftrightarrow\left(t+6\right)\left(t-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+6=0\\t-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+5x+10=0\\x^2+5x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{5}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\\x\left(x+5\right)=0\left(tm\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=-5\left(tm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{0;-5\right\}\)
Rút gọn:
\(M=\dfrac{x+2+\sqrt{x^2-4}}{x+2-\sqrt{x^2-4}}+\dfrac{x+2-\sqrt{x^2-4}}{x+2+\sqrt{x^2-4}}\)
điều kiện \(\left[{}\begin{matrix}x\ge2\\x< -2\end{matrix}\right.\)
ta có : \(M=\dfrac{x+2+\sqrt{x^2-4}}{x+2-\sqrt{x^2-4}}+\dfrac{x+2-\sqrt{x^2-4}}{x+2+\sqrt{x^2-4}}\)
\(=\dfrac{\left(x+2+\sqrt{x^2-4}\right)^2+\left(x+2-\sqrt{x^2-4}\right)^2}{\left(x+2-\sqrt{x^2-4}\right)\left(x+2+\sqrt{x^2-4}\right)}\)
\(=\dfrac{4x^2+8x}{4x+8}=x\)
Rút gọn:
\(M=\dfrac{x+2+\sqrt{x^2-4}}{x+2-\sqrt{x^2-4}}+\dfrac{x+2-\sqrt{x^2-4}}{x+2+\sqrt{x^2-4}}\)
M= \(\dfrac{x+2+\sqrt{x^2-4}}{x+2-\sqrt{x^2-4}}+\dfrac{x+2-\sqrt{x^2-4}}{x+2+\sqrt{x^2-4}}\)
M=\(\dfrac{(x+2+\sqrt{x^2-4})^2}{(x+2)^2+\sqrt{x^2-4}^2}+\dfrac{(x+2-\sqrt{x^2-4})^2}{(x+2)^2+\sqrt{x^2-4}^2}\)
M=\(\dfrac{\left(x+2\right)^2+2.\left(x+2\right).\sqrt{x^2-4}+x^2-4}{x^2+4x+4-x^2+4}+\dfrac{\left(x+2\right)^2-2.\left(x+2\right).\sqrt{x^2-4}+x^2-4}{x^2+4x+4-x^2+4}\)
M=\(\dfrac{\left(x+2\right)^2+x^2-4+\left(x+2\right)^2+x^2-4}{x^2+4x+4-x^2+4}\)
M=\(\dfrac{x^2+4x+4+x^2-4+x^2+4x+4+x^2-4}{4x+8}\)
M= \(\dfrac{4x^2+8}{4x+8}\)
M= \(\dfrac{x.\left(4x+8\right)}{4x+8}\)
M= x
OK nha bn !!
\(\frac{x+2+\sqrt{x^2-4}}{x+2-\sqrt{x^2-4}}+\frac{x+2-\sqrt{x^2-4}}{x+2+\sqrt{x^2-4}}\)
\(=\frac{\left(x+2+\sqrt{x^2-4}\right)^2+\left(x+2-\sqrt{x^2-4}\right)^2}{\left(x+2+\sqrt{x^2-4}\right)\left(x+2-\sqrt{x^2-4}\right)}\)
\(=\frac{\left(x^2+4+x^2-4+4x+2\sqrt{x^2-4}+x\sqrt{x^2-4}\right)+\left(x^2+4+x^2-4+4x-2\sqrt{x^2-4}-x\sqrt{x^2-4}\right)}{x^2+2x-x\sqrt{x^2-4}+2x+4-2\sqrt{x^2-4}+x\sqrt{x^2-4}+2\sqrt{x^2-4}-x^2+4}\)\(=\frac{4x^2+8x}{4x+8}=\frac{4x\left(x+2\right)}{4\left(x+2\right)}=x\)
\(DK:x\ne1,-1,-2\)
\(\frac{x+2+\sqrt{x^2-4}}{x+2-\sqrt{x^2-4}}+\frac{x+2-\sqrt{x^2-4}}{x+2+\sqrt{x^2-4}}\)
\(=\frac{\left(x+2+\sqrt{x^2-4}\right)^2+\left(x+2-\sqrt{x^2-4}\right)}{\left(x+2\right)^2-x^2+4}\)
\(=\frac{\left(x+2\right)^2+2\left(x+2\right)\sqrt{x^2-4}+x^2-4+\left(x+2\right)^2-2\left(x+2\right)\sqrt{x^2-4}+x^2-4}{4x+8}\)
\(=\frac{4x^2+8x-8}{4x+8}\)
\(=\frac{x^2+2x-2}{x+2}\)
thiếu đề kìa