Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề đúng phải là:
\(\frac{x+1}{2014}+\frac{x+2}{2013}+\frac{x+3}{2012}=\frac{x+10}{2005}+\frac{x+11}{2004}+\frac{x+12}{2003}\)
Cộng mỗi phân thức thêm 1, quy đồng rồi chuyển sang 1 vế ta được:
\(\frac{x+2015}{2014}+\frac{x+2015}{2013}+\frac{x+2015}{2012}-\frac{x+2015}{2005}-\frac{x+2015}{2004}-\frac{x+2015}{2003}=0\)
\(\Leftrightarrow\left(x+2015\right)\left(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)
Mà BT tích sau luôn nhỏ hơn 0
=> x+2015=0 => x = -2015
\(\frac{x+1}{2014}+\frac{x+2}{2013}+\frac{x+3}{2012}=\frac{x+10}{2005}+\frac{x+11}{2004}+\frac{x+12}{2003}\)( như này đúng không ? :)) )
<=> \(\left(\frac{x+1}{2014}+1\right)+\left(\frac{x+2}{2013}+1\right)+\left(\frac{x+3}{2012}+1\right)=\left(\frac{x+10}{2005}+1\right)+\left(\frac{x+11}{2004}+1\right)+\left(\frac{x+12}{2003}+1\right)\)
<=> \(\frac{x+1+2014}{2014}+\frac{x+2+2013}{2013}+\frac{x+3+2012}{2012}=\frac{x+10+2005}{2005}+\frac{x+11+2004}{2004}+\frac{x+12+2003}{2003}\)
<=> \(\frac{x+2015}{2014}+\frac{x+2015}{2013}+\frac{x+2015}{2012}=\frac{x+2015}{2005}+\frac{x+2015}{2004}+\frac{x+12}{2003}\)
<=> \(\frac{x+2015}{2014}+\frac{x+2015}{2013}+\frac{x+2015}{2012}-\frac{x+2015}{2005}-\frac{x+2015}{2004}-\frac{x+12}{2003}=0\)
<=> \(\left(x+2015\right)\left(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)
Vì \(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\ne0\)
=> x + 2015 = 0
=> x = -2015
a) (x-5)x+2015 - (x-5)x+2014 =0
(x-5)x+2014(x-5 -1) =0
+ x -5 =0 => x =5
+ x -6 =0 => x =6
Vậy x = 5 hoặc x =6
\(\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}=\dfrac{x-5}{2004}+\dfrac{x-4}{2005}+\dfrac{x-3}{2006}\)
\(\Leftrightarrow\left(\dfrac{x-8}{2001}+1\right)+\left(\dfrac{x-7}{2002}+1\right)+\left(\dfrac{x-6}{2003}+1\right)=\left(\dfrac{x-5}{2004}+1\right)+\left(\dfrac{x-4}{2005}+1\right)+\left(\dfrac{x-3}{2006}+1\right)\)
\(\Leftrightarrow\dfrac{x-2009}{2001}+\dfrac{x-2009}{2002}+\dfrac{x-2009}{2003}-\dfrac{x-2009}{2004}-\dfrac{x-2009}{2005}-\dfrac{x-2009}{2006}=0\)
\(\Leftrightarrow\left(x-2009\right).\left(\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}-\dfrac{1}{2004}-\dfrac{1}{2005}-\dfrac{1}{2006}\right)=0\)
\(\text{Mà}:\left(\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}-\dfrac{1}{2004}-\dfrac{1}{2005}-\dfrac{1}{2006}\right)\ne0\)
\(\Rightarrow x-2009=0\Rightarrow x=2009\)
\(\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}=\dfrac{x-5}{2004}+\dfrac{x-4}{4}+\dfrac{x-5}{2006}\)
\(\Leftrightarrow\left(\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}\right)-3=\left(\dfrac{x-5}{2004}+\dfrac{x-4}{4}+\dfrac{x-5}{2006}\right)-3\)
\(\Leftrightarrow\left(\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}\right)-\left(1+1+1\right)=\left(\dfrac{x-5}{2004}+\dfrac{x-4}{2005}+\dfrac{x-5}{2006}\right)-\left(1+1+1\right)\)
\(\Leftrightarrow\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}-1-1-1=\dfrac{x-5}{2004}+\dfrac{x-4}{2005}+\dfrac{x-5}{2006}-1-1-1\)
\(\Leftrightarrow\left(\dfrac{x-8}{2001}-1\right)+\left(\dfrac{x-7}{2002}-1\right)+\left(\dfrac{x-6}{2003}-1\right)=\left(\dfrac{x-5}{2004}-1\right)+\left(\dfrac{x-4}{2005}-1\right)+\left(\dfrac{x-5}{2006}-1\right)\)
\(\)\(\Leftrightarrow\dfrac{x-2009}{2001}+\dfrac{x-2009}{2002}+\dfrac{x-2009}{2003}=\dfrac{x-2009}{2004}+\dfrac{x-2009}{2006}+\dfrac{x-2009}{2006}\)
\(\Leftrightarrow\left(\dfrac{x-2009}{2001}+\dfrac{x-2009}{2002}+\dfrac{x-2009}{2003}\right)-\left(\dfrac{x-2009}{2004}+\dfrac{x-2009}{2006}+\dfrac{x-2009}{2006}\right)=0\)
\(\Leftrightarrow\dfrac{x-2009}{2001}+\dfrac{x-2009}{2002}+\dfrac{x-2009}{2003}-\dfrac{x-2009}{2004}-\dfrac{x-2009}{2006}-\dfrac{x-2009}{2006}=0\)
\(\Leftrightarrow\left(x-2009\right)\left(\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}-\dfrac{1}{2004}-\dfrac{1}{2005}-\dfrac{1}{2006}\right)=0\)
\(\Leftrightarrow x-2009=0\)
\(\Leftrightarrow x=2009\)
Vậy \(x=2009\)
Ta có : \(\dfrac{x-2012}{8}+\dfrac{x-2008}{6}+\dfrac{x-2005}{5}=10-\dfrac{x-2004}{4}\)
\(\Leftrightarrow\left(\dfrac{x-2012}{8}-1\right)+\left(\dfrac{x-2008}{6}-2\right)+\left(\dfrac{x-2005}{5}-3\right)+\left(\dfrac{x-2004}{4}-4\right)=0\)\(\Leftrightarrow\dfrac{x-2020}{8}+\dfrac{x-2020}{6}+\dfrac{x-2020}{5}+\dfrac{x-2020}{4}=0\)
\(\Leftrightarrow\left(x-2020\right).\left(\dfrac{1}{8}+\dfrac{1}{6}+\dfrac{1}{5}+\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow x-2020=0\Leftrightarrow x=2020\)
Vậy x = 2020