Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4) Ta có pt \(\Leftrightarrow\dfrac{7x+1+x^2-8x-1}{\sqrt[3]{\left(7x+1\right)^2}-\sqrt[3]{\left(7x+1\right)\left(x^2-8x-1\right)}+\sqrt[3]{\left(x^2-8x+1\right)^2}}+\dfrac{x^2-x+8-8}{\sqrt[3]{\left(x^2-x+8\right)^2}+2\sqrt[3]{x^2-x+8}+4}=0\)
\(\Leftrightarrow\dfrac{x^2-x}{...}+\dfrac{x^2-x}{...}=0\Leftrightarrow\left(x^2-x\right)\left(...\right)=0\)
Mà ...>0 => \(x^2-x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
2) Ta có pt \(\Leftrightarrow\sqrt{x\left(x+1\right)}-\sqrt{x-1}=\sqrt{x}\Leftrightarrow x\left(x+1\right)=\left(\sqrt{x}+\sqrt{x-1}\right)^2\)
\(\Leftrightarrow x^2+x=2x-1+2\sqrt{x\left(x-1\right)}\Leftrightarrow x^2-x-1=2\left(\sqrt{x^2-x}-1\right)\)
\(\Leftrightarrow x^2-x-1=2.\dfrac{x^2-x-1}{\sqrt{x^2-x}+1}\Leftrightarrow\left(x^2-x-1\right)\left(1-\dfrac{2}{\sqrt{x^2-x}+1}\right)=0\)...đến đấy chắc tự làm tiếp được
a/ ĐKXĐ: x>= 0 ; x khác 1
b/ \(A=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{8\sqrt{x}}{x-1}\right):\dfrac{4\sqrt{x}-8}{1-x}\)
\(=\left(\dfrac{\left(\sqrt{x}+1\right)^2}{x-1}-\dfrac{\left(\sqrt{x}-1\right)^2}{x-1}-\dfrac{8\sqrt{x}}{x-1}\right):\dfrac{8-4\sqrt{x}}{x-1}\)
\(=\dfrac{x+2\sqrt{x}+1-x+2\sqrt{2}-1-8\sqrt{x}}{x-1}\cdot\dfrac{x-1}{8-4\sqrt{x}}\)
\(=\dfrac{-4\sqrt{x}}{x-1}\cdot\dfrac{x-1}{4\left(2-\sqrt{x}\right)}=\dfrac{-4\sqrt{x}}{4\left(2-\sqrt{x}\right)}=-\dfrac{\sqrt{x}}{2-\sqrt{x}}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
Làm nốt bài 1 ::v
\(\dfrac{\sqrt{6}-\sqrt{3}}{1-\sqrt{2}}+\dfrac{3+6\sqrt{3}}{\sqrt{3}}-\dfrac{13}{\sqrt{3}+4}=\dfrac{-\sqrt{3}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\dfrac{\sqrt{3}\left(\sqrt{3}+6\right)}{\sqrt{3}}-\dfrac{13}{\sqrt{3}+4}=6-\dfrac{13}{\sqrt{3}+4}=\dfrac{11+6\sqrt{3}}{\sqrt{3}+4}\)
1. \(\dfrac{2\sqrt{3}-6}{\sqrt{8}-2}=\dfrac{2\left(\sqrt{3}-3\right)}{2\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{3}-3}{\sqrt{2}-1}=\dfrac{\left(\sqrt{3}-3\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\dfrac{\sqrt{6}+\sqrt{3}-3\sqrt{2}-3}{2-1}=\sqrt{6}+\sqrt{3}-3\sqrt{2}-3\)
2. \(\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}=\dfrac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\left(2\sqrt{x}+1\right)=\sqrt{x}\left(\sqrt{x}+1\right)-2\sqrt{x}-1=x+\sqrt{x}-2\sqrt{x}-1=x-\sqrt{x}-1\)
3. \(\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}=\dfrac{x\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{2x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{x\sqrt{x}-2x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\sqrt{x}-1\)
1)
ĐK: \(x\geq 5\)
PT \(\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=6\)
\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=6\)
\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=6\)
\(\Leftrightarrow 2\sqrt{x-5}=6\Rightarrow \sqrt{x-5}=3\Rightarrow x=3^2+5=14\)
2)
ĐK: \(x\geq -1\)
\(\sqrt{x+1}+\sqrt{x+6}=5\)
\(\Leftrightarrow (\sqrt{x+1}-2)+(\sqrt{x+6}-3)=0\)
\(\Leftrightarrow \frac{x+1-2^2}{\sqrt{x+1}+2}+\frac{x+6-3^2}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow \frac{x-3}{\sqrt{x+1}+2}+\frac{x-3}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow (x-3)\left(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}\right)=0\)
Vì \(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}>0, \forall x\geq -1\) nên $x-3=0$
\(\Rightarrow x=3\) (thỏa mãn)
Vậy .............
4 , Ta có :
\(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x-9}{x-9}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}+\dfrac{2\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}-\dfrac{3\left(x-3\right)}{x-9}\)
\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x+9}{x-9}\)
\(=\dfrac{3\sqrt{x}+9}{x-9}\)
\(=\dfrac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{3}{\sqrt{x}-3}\)
2 , Ta có :
\(\dfrac{x\sqrt{x}+1}{x-1}-\dfrac{x-1}{\sqrt{x}+1}=\dfrac{x\sqrt{x}+1}{x-1}-\dfrac{\left(x-1\right)\left(\sqrt{x}-1\right)}{x-1}\)
\(=\dfrac{x\sqrt{x}+1}{x-1}-\dfrac{x\sqrt{x}-x-\sqrt{x}+1}{x-1}\)
\(=\dfrac{x\sqrt{x}+1-x\sqrt{x}+x+\sqrt{x}-1}{x-1}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
Bài 1:
a: \(A=\left(\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}+1+8\sqrt{x}}{9x-1}\right):\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\)
\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1+5\sqrt{x}+1}{9x-1}:\dfrac{3}{3\sqrt{x}+1}\)
\(=\dfrac{3x+3\sqrt{x}}{9x-1}\cdot\dfrac{3\sqrt{x}+1}{3}=\dfrac{x+\sqrt{x}}{3\sqrt{x}-1}\)
b: \(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(x-1\right)^2}{2}\)
\(=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{1}\cdot\dfrac{\sqrt{x}-1}{2}\)
\(=-\sqrt{x}\left(\sqrt{x}-1\right)\)
\(ĐKXĐ:x\ne\pm1\)
\(a.D=\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right):\left(\dfrac{2}{x^2-1}-\dfrac{x}{x-1}+\dfrac{1}{x+1}\right)=\dfrac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}:\dfrac{2-x\left(x+1\right)+x-1}{\left(x+1\right)\left(x-1\right)}=\dfrac{4x}{\left(x+1\right)\left(x-1\right)}.\dfrac{\left(x+1\right)\left(x-1\right)}{1-x^2}=\dfrac{4x}{1-x^2}\)\(b.x=\sqrt{3+\sqrt{8}}=\sqrt{2+2\sqrt{2}+1}=\sqrt{2}+1\left(TM\right)\)
Khi đó : \(D=\dfrac{4\left(\sqrt{2}+1\right)}{1-3-2\sqrt{2}}=\dfrac{4\left(\sqrt{2}+1\right)}{-2\left(1+\sqrt{2}\right)}=-2\)
\(c.D=\dfrac{8}{3}\Leftrightarrow\dfrac{4x}{1-x^2}=\dfrac{8}{3}\)
\(\Leftrightarrow\dfrac{12x-8\left(1-x^2\right)}{3\left(1-x^2\right)}=0\)
\(\Leftrightarrow8x^2+12x-8=0\)
\(\Leftrightarrow2x^2-x+4x-2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\left(TM\right)\\x=-2\left(TM\right)\end{matrix}\right.\)
KL.........