K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2021

\(\left(x-1\right)\left(x-2\right)\left(x+4\right)\left(x+5\right)=122\)

\(\Leftrightarrow\left(x^2+3x-4\right)\left(x^2+3x-10\right)=122\)

Đặt \(x^2+3x-4=t\)

\(\Leftrightarrow t\left(t-6\right)=122\Leftrightarrow t^2-6t-122=0\Leftrightarrow t=3\pm\sqrt{131}\)

đề có lỗi ko bạn ? 

2: 

a: =>-2x=10

=>x=-5

b: =>(x-3)(2x+5)=0

=>x=3 hoặc x=-5/2

28 tháng 10 2021

1. \(\Leftrightarrow2x^2-3x-2x^2=12\\ \Leftrightarrow-3x=12\\ \Leftrightarrow x=-4\)

2. \(\Leftrightarrow\left(2x-4\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

28 tháng 10 2021

1) \(\Rightarrow2x^2-3x-2x^2=12\Rightarrow-3x=12\Rightarrow x=-4\)

2) \(\Rightarrow2\left(x-3\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

16 tháng 2 2022

\(\dfrac{x+1}{124}+1+\dfrac{x+2}{123}+1=\dfrac{x+3}{122}+1+\dfrac{x+4}{121}+1\)

\(\Leftrightarrow\dfrac{x+125}{124}+\dfrac{x+125}{123}=\dfrac{x+125}{122}+\dfrac{x+125}{121}\)

\(\Leftrightarrow\left(x+125\right)\left(\dfrac{1}{124}+\dfrac{1}{123}-\dfrac{1}{122}-\dfrac{1}{121}\ne0\right)=0\Leftrightarrow x=-125\)

16 tháng 2 2022

<=>\(\dfrac{x+1}{124}+\dfrac{x+2}{123}-\dfrac{x+3}{122}-\dfrac{x+4}{121}=0\)

<=>\(\left(\dfrac{x+1}{124}+1\right)+\left(\dfrac{x+2}{123}+1\right)-\left(\dfrac{x+3}{122}+1\right)-\left(\dfrac{x+4}{121}+1\right)=0\)

<=>\(\dfrac{x+125}{124}+\dfrac{x+125}{123}-\dfrac{x+125}{122}-\dfrac{x+125}{121}=0\)

<=>\(\left(x+125\right)\left(\dfrac{1}{124}+\dfrac{1}{123}-\dfrac{1}{122}-\dfrac{1}{121}\right)=0\)

<=>x+125=0

<=>x=-125

27 tháng 9 2019

Ta có:

Bài tập: Phương trình đưa được về dạng ax + b = 0 | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập: Phương trình đưa được về dạng ax + b = 0 | Lý thuyết và Bài tập Toán 8 có đáp án

⇔ 4x + 20 + 3x + 36 - 5x + 10 = 2x + 66

⇔ 0x = 0

⇒ Phương trình đã cho vô số nghiệm.

Vậy phương trình đã cho vô số nghiệm.

6 tháng 1 2018

Chọn D

Cách giải phương trình đưa được về dạng ax + b = 0 cực hay, có đáp án | Toán lớp 8

⇔ 4(x + 5) + 3(x + 12) - 5(x – 2) = 2x + 66

⇔ 4x + 20 + 3x + 36 – 5x + 10 = 2x + 66

⇔ 0x = 0 (thỏa mãn mọi giá trị của x)

Vậy phương trình đã cho có vô số nghiệm.

2 tháng 7 2021

có ai giải ko

 

20 tháng 12 2020

1, \(45+x^3-5x^2-9x=9\left(5-x\right)+x^2\left(x-5\right)\)

\(=\left(9-x^2\right)\left(x-5\right)=\left(3-x\right)\left(x+3\right)\left(x-5\right)\)

3, \(x^4-5x^2+4\)

Đặt \(x^2=t\left(t\ge0\right)\)ta có : 

\(t^2-5t+4=t^2-t-4t+4=t\left(t-1\right)-4\left(t-1\right)\)

\(=\left(t-4\right)\left(t-1\right)=\left(x^2-4\right)\left(x^2-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)

29 tháng 3 2022

`Answer:`

1. `45+x^3-5x^2-9x`

`=x^3+3x^2-8x^2-24x+15x+45x`

`=x^2 .(x+3)-8x.(x+3)+15.(x+3)`

`=(x+3).(x^2-8x+15)`

`=(x+3).(x^2-5x-3x+15)`

`=(x-3).(x-5).(x-3)`

2. `x^4-2x^3-2x^2-2x-3`

`=x^4+x^3-3x^3+x^2+x-3x-3`

`=x^3 .(x+1)-3x^2 .(x+1)+x.(x+1)-3.(x+1)`

`=(x+1).(x^3-3x^2+x-3)`

`=(x+1).[x^3 .(x-3).(x-3)]`

`=(x+1).(x-3).(x^2+1)`

3. `x^4-5x^2+4`

`=x^4-x^2-4x^2+4`

`=x^2 .(x^2-1)-4.(x^2-1)`

`=(x^2-1).(x^2-4)`

`=(x-1).(x+1).(x-2).(x+2)`

4. `x^4+64`

`=x^4+16x^2+64-16x^2`

`=(x^2+8)^2-16x^2`

`=(x^2+8-4x).(x^2+8+4x)`

5. `x^5+x^4+1`

`=x^5+x^4+x^3-x^3+1`

`=x^3 .(x^2+x+1)-(x^3-1)`

`=x^3 .(x^2+x+1)-(x-1).(x^2+x+1)`

`=(x^2+x+1).(x^3-x+1)`

6. `(x^2+2x).(x^2+2x+4)+3`

`=(x^2+2x)^2+4.(x^2+2x)+3`

`=(x^2+2x)^2+x^2+2x+3.(x^2+2x)+3`

`=(x^2+2x+1).(x^2+2x)+3.(x^2+2x+1)`

`=(x^2+2x+1).(x^2+2x+3)`

`=(x+1)^2 .(x^2+2x+3)`

7. `(x^3+4x+8)^2+3x.(x^2+4x+8)+2x^2`

`=x^6+8x^4+16x^3+16x^2+64x+64+3x^3+12x^2+24x+2x^2`

`=x^6+8x^4+19x^3+30x^2+88x+64`

8. `x^3 .(x^2-7)^2-36x`

`=x[x^2.(x^2-7)^2-36]`

`=x[(x^3-7x)^2-6^2]`

`=x.(x^3-7x-6).(x^3-7x+6)`

`=x.(x^3-6x-x-6).(x^3-x-6x+6)`

`=x.[x.(x^2-1)-6.(x+1)].[x.(x^2-1)-6.(x-1)]`

`=x.(x+1).[x.(x-1)-6].(x-1).[x.(x+1)-6]`

`=x.(x+1).(x-1).(x^2-3x+2x-6).(x^2+3x-2x-6)`

`=x.(x+1).(x-1).[x.(x-3)+2.(x-3)].[x.(x+3)-2.(x+3)]`

`=x.(x+1)(x-1).(x-2).(x+2).(x-3).(x+3)`

9. `x^5+x+1`

`=x^5-x^2+x^2+x+1`

`=x^2 .(x^3-1)+(x^2+x+1)`

`=x^2 .(x-1).(x^2+x+1)+(x^2+x+1)`

`=(x^2+x+1).(x^3-x^2+1)`

10. `x^8+x^4+1`

`=[(x^4)^2+2x^4+1]-x^4`

`=(x^4+1)^2-(x^2)^2`

`=(x^4-x^2+1).(x^4+x^2+1)`

`=[(x^4+2x^2+1)-x^2].(x^4-x^2+1)`

`=[(x^2+1)^2-x^2].(x^4-x^2+1)`

`=(x^2-x+1).(x^2+x+1).(x^4-x^2+1)

11. ` x^5-x^4-x^3-x^2-x-2`

`=x^5-2x^4+x^4-2x^3+x^3-2x^2+x^2-2x+x-2`

`=x^4 .(x-2)+x^3 ,(x-2)+x^2 .(x-2)+x.(x-2)+(x-2)`

`=(x-2).(x^4+x^3+x^2+x+1)`

12. `x^9-x^7-x^6-x^5+x^4+x^3+x^2-1`

`=(x^9-x^7)-(x^6-x^4)-(x^5-x^3)+(x^2-1)`

`=x^7 .(x^2-1)-x^4 .(x^2-1)-x^3 .(x^2-1)+(x^2-1)`

`=(x^2-1).(x^7-x^4-x^3+1)`

`=(x-1)(x+1)(x^3-1)(x^4-1)`

`=(x-1)(x+1)(x^2+x+1)(x-1)(x^2-1)(x^2+1)`

`=(x-1)^2 .(x+1)(x^2+x+1)(x-1)(x+1)(x^2+1)`

`=(x-1)^3 .(x+1)^2 .(x^2+x+1)(x^2+1)`

13. `(x^2-x)^2-12(x^2-x)+24`

`=[ (x^2-x)^2-2.6(x^2-x)+6^2]-12`

`=(x^2-x+6)^2-12`

`=(x^2-x+6-\sqrt{12})(x^2-x+6+\sqrt{12})`

22 tháng 9 2020

a) ( x + 2 )( x + 3 ) - ( x - 2 )( x + 5 )

= x2 + 5x + 6 - ( x2 + 3x - 10 )

= x2 + 5x + 6 - x2 - 3x + 10

= 2x + 16

b) ( 8 - 5x )( x + 2 ) + 4( x - 2 )( x + 1 ) + 2( x - 2 )( x + 2 ) + 10

= -5x2 - 2x + 16 + 4( x2 - x - 2 ) + 2( x2 - 4 ) + 10

= -5x2 - 2x + 16 + 4x2 - 4x - 8 + 2x2 - 8 + 10

= x2 - 6x + 10

c) 4( x - 1 )( x + 5 ) - ( x + 2 )( x + 5 ) - 3( x - 1 )( x + 2 )

= 4( x2 + 4x - 5 ) - ( x2 + 7x + 10 ) - 3( x2 + x - 2 )

= 4x2 + 16x - 20 - x2 - 7x - 10 - 3x2 - 3x + 6

= 6x - 24

d) ( x - 1 )( x5 + x4 + x3 + x2 + x + 1 )

= x6 + x5 + x4 + x3 + x2 + x - x5 - x4 - x3 - x2 - x - 1

= x6 - 1

10 tháng 7 2017

a) x = 4,4.

b) x = 1,860147051.

c) x = 0

d) x = 4.

    EM CHỈ LÀM LỤI THUI NHA! EM MỚI HOK LỚP 6 AK! NẾU ĐÚNG THÌ MỌI NGƯỜI K NHA!

12 tháng 7 2018

a) x = 4,4

b) x = 1,860147051

c) x = 0

d) x = 4

15 tháng 2 2020
https://i.imgur.com/zKeoHqB.jpg