Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x) = x2 - x + 5 - ( 4x2 + x3 - 4x + 3 )
= x2 - x + 5 - 4x2 - x3 + 4x - 3
= -x3 - 3x2 + 3x - 2
g(x) = -( 2x2 - 4x + 1 ) - ( -3x3 + 5x2 - 2 )
= -2x2 + 4x - 1 + 3x3 - 5x2 + 2
= 3x3 - 7x2 + 4x + 1
h(x) - g(x) = f(x)
h(x) = f(x) + g(x)
= -x3 - 3x2 + 3x - 2 + 3x3 - 7x2 + 4x + 1
= 2x3 - 10x2 + 7x - 1
Ta có: x2 - x + 1 = x2 - 1/2.x - 1/2.x + 1/4 + 3/4 = x(x - 1/2) - 1/2(x - 1/2) + 3/4 = (x - 1/2)2 + 3/4
Do (x - 1/2)2 \(\ge\)với mọi x ; 3/4 > 0
=> (x - 1/2)2 + 3/4 > 0 với mọi x=> x2 - x + 1 > 0 với mọi x
=> đa thức x2 - x + 1 không có nghiệm
??
\(\hept{\begin{cases}2x^4\ge0\\x^2\ge0\end{cases}}\)\(\Rightarrow2x^4+x^2\ge0\)\(\Rightarrow2x^4+x^2+2\ge2>0\)
Dấu "=" khi x=0
Vậy đa thức đã cho không có nghiệm
2x4 + x2 + 2
Có : \(\hept{\begin{cases}2x^4\ge0\\x^2\ge0\end{cases}\forall x\Rightarrow}2x^4+x^2+2\ge2>0\forall x\)
=> Đa thức vô nghiệm
lớp 7 thì chưa học mấy cái hằng đẳng thức nên cái này mà dễ nhất thì nhân hết ra còn không thì phải tìm cách đặt chung thôi
x-1=0
x=1
=> (x-1)x+4 - (x-1)x+2 = 0
=> (x-1)2[(x-1)x+2 - 1] = 0
=>\(\orbr{\begin{cases}\left(x-1\right)^2=0\\\left(x-1\right)^{x+2}-1=0\end{cases}}\)
=>\(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)