Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\dfrac{1}{2}x-3\right)\left(-\dfrac{1}{3}+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-3=0\\-\dfrac{1}{3}+x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=0+3\\-\dfrac{1}{3}+x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3:\dfrac{1}{2}\\x=0-\left(-\dfrac{1}{3}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\dfrac{1}{3}\end{matrix}\right.\)
d) \(9x^2=1\)
\(\Leftrightarrow x^2=1:9\)
\(\Leftrightarrow x^2=\dfrac{1}{9}\)
\(\Leftrightarrow x^2=\left(\dfrac{1}{3}\right)^2\)
\(\Leftrightarrow x=\dfrac{1}{3}\)
a) \(\dfrac{2}{3}.x-\dfrac{1}{2}.x=\dfrac{5}{12}\)
=> \(\left(\dfrac{2}{3}-\dfrac{1}{2}\right).x=\dfrac{5}{12}\)
=> \(\left(\dfrac{4}{6}-\dfrac{3}{6}\right).x=\dfrac{5}{12}\)
=> \(\dfrac{1}{6}\) . x = \(\dfrac{5}{12}\)
=> \(x=\dfrac{5}{12}:\dfrac{1}{6}\)
=> x =\(\dfrac{5}{12}.\dfrac{6}{1}\)
=> x = \(\dfrac{5}{2}\)
Vậy x = \(\dfrac{5}{2}\)
a) \(x-\frac{10}{3}=\frac{7}{15}\cdot\frac{3}{5}\) b) \(x+\frac{3}{22}=\frac{27}{121}\cdot\frac{11}{9}\)
\(\Leftrightarrow x-\frac{10}{3}=\frac{7}{25}\) \(\Leftrightarrow x+\frac{3}{22}=\frac{3}{11}\)
\(\Rightarrow x=\frac{7}{25}+\frac{10}{3}\) \(\Rightarrow x=\frac{3}{11}-\frac{3}{22}\)
\(x=\frac{271}{75}\) \(x=\frac{3}{22}\)
c) \(\frac{8}{23}.\frac{46}{24}-x=\frac{1}{3}\) d) \(1-x=\frac{49}{65}.\frac{5}{7}\)
\(\Leftrightarrow\frac{2}{3}-x=\frac{1}{3}\) \(\Leftrightarrow1-x=\frac{7}{13}\)
\(\Rightarrow x=\frac{2}{3}-\frac{1}{3}\) \(\Rightarrow x=1-\frac{7}{13}\)
\(x=\frac{1}{3}\) \(x=\frac{6}{13}\)
\(\left(x^2.y\right)^5.\left(x^2.y^2\right)^7.\left(x.y^2\right)^6.x^3\)
\(=x^{10}.y^5.x^{14}.y^{14}.x^6.y^{12}.x^3\)
\(=x^{33}.y^{31}\)
Bài 1: Tìm \( x \)
\[
x - \frac{25\%}{100}x = \frac{1}{2}
\]
Để giải phương trình này, trước hết chúng ta phải chuyển đổi phần trăm thành dạng thập phân:
\[
\frac{25\%}{100} = 0.25
\]
Phương trình ban đầu trở thành:
\[
x - 0.25x = \frac{1}{2}
\]
Tổng hợp các hạng tử giống nhau:
\[
1x - 0.25x = \frac{1}{2}
\]
\[
0.75x = \frac{1}{2}
\]
Giải phương trình ta được:
\[
x = \frac{\frac{1}{2}}{0.75} = \frac{2}{3}
\]
Vậy, \( x = \frac{2}{3} \)
Bài 2: Tính hợp lý
a) \[
\frac{5}{-4} + \frac{3}{4} + \frac{4}{-5} + \frac{14}{5} - \frac{7}{3}
\]
Chúng ta cần tìm một mẫu số chung cho tất cả các phân số. Mẫu số chung nhỏ nhất là 60.
\[
= \frac{75}{-60} + \frac{45}{60} + \frac{-48}{60} + \frac{168}{60} - \frac{140}{60}
\]
\[
= \frac{75 + 45 - 48 + 168 - 140}{60}
\]
\[
= \frac{100}{60} = \frac{5}{3}
\]
b) \[
\frac{8}{3} \times \frac{2}{5} \times \frac{3}{10} \times \frac{10}{92} \times \frac{19}{92}
\]
Tích của các phân số là:
\[
= \frac{8 \times 2 \times 3 \times 10 \times 19}{3 \times 5 \times 10 \times 92 \times 92}
\]
\[
= \frac{9120}{4131600} = \frac{57}{25825}
\]
c) \[
\frac{5}{7} \times \frac{2}{11} + \frac{5}{7} \times \frac{9}{14} + \frac{1}{5}
\]
Tích của các phân số là:
\[
= \frac{10}{77} + \frac{45}{98} + \frac{1}{5}
\]
\[
= \frac{980}{7546} + \frac{3485}{7546} + \frac{15092}{75460}
\]
\[
= \frac{2507}{7546}
\]
\(x\times x^2\times x^3\times x^4\times...\times x^{100}=x^{1+2+3+4+...+100}=x^{101\times500}=x^{5050}\)