Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://olm.vn/hoi-dap/detail/101683214611.html e kham kahor
Nếu cần link anh đưa cho , nếu ko vào câu hỏi tương tự sẽ có
hc tốt
MIK LM CÂU KHÓ NHẤT NHÁ!
c) Có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
\(\Rightarrow\left\{{}\begin{matrix}x=12.\frac{3}{2}=18\\y=12.\frac{4}{3}=16\\z=\frac{5}{4}=15\end{matrix}\right.\)
Vậy...
a) Ta có: \(\frac{1}{2}x=\frac{3}{4}z=\frac{2}{3}y.\)
=> \(\frac{x}{2}=\frac{3z}{4}=\frac{2y}{3}\)
=> \(\frac{x}{2}=\frac{z}{\frac{4}{3}}=\frac{y}{\frac{3}{2}}\) và \(x-y=15.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{2}=\frac{z}{\frac{4}{3}}=\frac{y}{\frac{3}{2}}=\frac{x-y}{2-\frac{3}{2}}=\frac{15}{\frac{1}{2}}=30.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=30\Rightarrow x=30.2=60\\\frac{z}{\frac{4}{3}}=30\Rightarrow z=30.\frac{4}{3}=40\\\frac{y}{\frac{3}{2}}=30\Rightarrow y=30.\frac{3}{2}=45\end{matrix}\right.\)
Vậy \(\left(x;z;y\right)=\left(60;40;45\right).\)
Chúc bạn học tốt!
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)+3\left(y-2\right)-\left(z-3\right)}{2.2+3.3-4}=\frac{45}{9}=5\)
\(\Leftrightarrow\hept{\begin{cases}x-1=5.2=10\\y-2=5.3=15\\z-3=5.4=20\end{cases}}\Leftrightarrow\hept{\begin{cases}x=11\\y=17\\z=23\end{cases}}\)
\(\frac{x-1}{2}=\frac{y-2}{3}\Rightarrow\frac{3\left(x-1\right)}{2}=y-2\Rightarrow y=\frac{3\left(x-1\right)}{2}+2=\frac{3\left(x-1\right)+4}{2}\)(1)
\(\frac{x-1}{2}=\frac{z-3}{4}\Rightarrow\frac{4\left(x-1\right)}{2}=z-3\Rightarrow z=\frac{4\left(x-1\right)}{2}+3=\frac{4\left(x-1\right)+6}{2}\)(2)
Từ (1) và (2) => 2x+3y-z=\(2x+3\left(\frac{3\left(x-1\right)+4}{2}\right)-\frac{4\left(x-1\right)+6}{2}=50\)
\(\Rightarrow\frac{4x}{2}+\frac{9\left(x-1\right)+12}{2}-\frac{4\left(x-1\right)+6}{2}=50\)
\(\Rightarrow\frac{4x+9x-9+12-4x+4-6}{2}=50\)
\(\Rightarrow9x+1=100\)
\(\Rightarrow9x=99\)
\(\Rightarrow x=11\)
Vì \(y=\frac{3\left(x-1\right)+4}{2}=\frac{3\left(11-1\right)+4}{2}=\frac{34}{2}=17\Leftrightarrow y=17\)
Vì \(z=\frac{4\left(x-1\right)+6}{2}=\frac{4\left(11-1\right)+6}{2}+\frac{46}{2}=23\Leftrightarrow z=23\)
Vậy x=11
y=17
z=23
\(\Rightarrow\frac{2\left(x-1\right)}{2.2}=\frac{3\left(y-2\right)}{3.3}=\frac{z-3}{4}\)
\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng t/c dãy tỉ số = nhau
\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{50-2-6+3}{9}=\frac{45}{9}=5\)
\(\Rightarrow\hept{\begin{cases}\frac{x-1}{2}=5\Rightarrow x-1=10\Rightarrow x=11\\\frac{y-2}{3}=5\Rightarrow y-2=15\Rightarrow y=17\\\frac{z-3}{4}=5\Rightarrow z-3=20\Rightarrow z=23\end{cases}}\)
\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)
\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)
Từ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
Suy ra: \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-z-3}{4+9-4}\)
\(=\frac{2x+3y-z+\left(-2-6-3\right)}{9}=\frac{2x+3y-z-11}{9}\)
\(=\frac{50-11}{9}=\frac{39}{9}\)
Do đó:...
Còn lại bạn làm tiếp nhé
Ta có:
x-1/2=y-2/3=z-3/4<=>(2x-1)/2=(3y-2)/3=...
=>(50-3z)4=4z-3<=>200-12z=4z-3<=>16z=2...
=>z=203/16.thay vào dãy tỉ số ban đầu ta tìm được x=199/16,y=605/16
câu 2: