Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nguyễn Trà My
Phần a)
\(3\times\left(\frac{1}{2}-x\right)+\frac{1}{3}=\frac{7}{6}-x\)
\(32-3x+13=76-x\)
\(116-3x=76-x\)
\(116-76=3x-x\)
\(46=2x\)
\(x=46\div2\)
\(x=13\)
4, Q = |x+\(\frac{1}{5}\) | -x +\(\frac{4}{7}\)
xét x \(\ge\) \(-\frac{1}{5}\)
Ta Có Q = |x+\(\frac{1}{5}\) | -x + \(\frac{4}{7}\) = x+\(\frac{1}{5}\) - x +\(\frac{4}{7}\) = \(\frac{27}{35}\) (1)
xét x \(< -\frac{1}{5}\)
Ta có Q = | x +\(\frac{1}{5}\) | - x + \(\frac{4}{7}\) = -x - \(\frac{1}{5}\) - x + \(\frac{4}{7}\) = -2x + \(\frac{13}{35}\)
với x \(< -\frac{1}{5}\)
=> -2x \(>\) \(\frac{2}{5}\)
=> -2x + \(\frac{13}{35}\) \(>\frac{27}{35}\) (2)
Từ (1) và (2) => MinQ = \(\frac{27}{35}\) khi \(x\ge-\frac{1}{5}\)
5 , D = |x| + |8-x|
D = |x| + |8-x| \(\ge\) |x+8-x| = |8| = 8
Dấu ''='' xảy ra khi x(8-x) \(\ge\) 0 <=> 0\(\le\)x\(\le\) 8
Vậy MinD = 8 khi \(0\le x\le8\)
6,L= |x - 2012| + |2011 - x|
L = |x-2012| + |2011-x| \(\ge\) | x-2012 + 2011 - x | = |-1| = 1
Dấu ''= '' xảy ra khi ( x-2012)(2011-x) \(\ge\) 0
làm nốt câu 6 nãy ấn nhầm
<=> 2011\(\le\) x \(\le\) 2012
Vậy MinL = 1 khi \(2011\le x\le2012\)
7 , E = | x- \(\frac{2006}{2007}\) | + |x-1|
Ta có :
E = |x-\(\frac{2006}{2007}\) | + |1-x|
E = | x - \(\frac{2006}{2007}\) | + |1-x| \(\ge\) | x - \(\frac{2006}{2007}\) + 1 - x | = \(\frac{1}{2007}\)
Dấu ''='' xảy ra khi (x- \(\frac{2006}{2007}\) ) ( 1-x ) \(\ge0\) <=> \(\frac{2006}{2007}\le x\le1\)
Vậy MinE = \(\frac{1}{2007}\) khi \(\frac{2006}{2007}\le x\le1\)
8 ,F = | x -\(\frac{1}{4}\) | + | \(x-\frac{3}{4}\) |
Ta có :
F = | x - \(\frac{1}{4}\) | + | \(\frac{3}{4}\) - x |
F = | x - \(\frac{1}{4}\) | + | \(\frac{3}{4}\) -x | \(\ge\) | x - \(\frac{1}{4}\) + \(\frac{3}{4}\) -x | = \(\frac{1}{2}\)
Dấu ''='' xảy ra khi ( x-\(\frac{1}{4}\) ) ( \(\frac{3}{4}-x\) ) \(\ge\) 0 <=> \(\frac{1}{4}\le x\le\frac{3}{4}\)
Vậy MinF = \(\frac{1}{2}\) khi \(\frac{1}{4}\le x\le\frac{3}{4}\)
\(\dfrac{1}{x}+\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{x+4}\)
\(=\dfrac{1}{x}+\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+...+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}\)
=2/x
\(2\left(\frac{3}{2}-x\right)-\frac{1}{3}=7x-\frac{1}{4}\)
\(\Leftrightarrow3-2x-\frac{1}{3}=7x-\frac{1}{4}\)
\(\Leftrightarrow-2x+\frac{8}{3}=7x-\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{4}+\frac{8}{3}=7x+2x\)
<=> 9x = 35/12
=> x = 35/12 . 1/9 = 35/108
3) \(\frac{x-3}{x-2}=\frac{4}{7}\)
\(\Rightarrow\left(x-3\right).7=\left(x-2\right).4\)
\(\Rightarrow7x-21=4x-8\)
\(\Rightarrow7x-4x=\left(-8\right)+21\)
\(\Rightarrow3x=13\)
\(\Rightarrow x=13:3\)
\(\Rightarrow x=\frac{13}{3}\)
Vậy \(x=\frac{13}{3}.\)
4) \(\left|x\right|+3,5=0\)
\(\Rightarrow\left|x\right|=0-3,5\)
\(\Rightarrow\left|x\right|=-3,5\)
Vì \(\left|x\right|\ge0\) \(\forall x.\)
\(\Rightarrow\left|x\right|>-3,5\)
\(\Rightarrow\left|x\right|\ne-3,5\)
Vậy \(x\in\varnothing.\)
5) \(\left|x+\frac{1}{3}\right|-4=1\)
\(\Rightarrow\left|x+\frac{1}{3}\right|=1+4\)
\(\Rightarrow\left|x+\frac{1}{3}\right|=5.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{3}=5\\x+\frac{1}{3}=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5-\frac{1}{3}\\x=\left(-5\right)-\frac{1}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{14}{3}\\x=-\frac{16}{3}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{14}{3};-\frac{16}{3}\right\}.\)
Chúc bạn học tốt!
a, \(\frac{x+2}{5}=\frac{1}{x-2}\Rightarrow\left(x+2\right)\left(x-2\right)=5\Rightarrow x^2-2x+2x-4=5\Rightarrow x^2=9\Rightarrow x=\pm3\)
b, \(\frac{3}{x-4}=\frac{x+4}{3}\Rightarrow\left(x+4\right)\left(x-4\right)=9\Rightarrow x^2-4x+4x-16=9\Rightarrow x^2=25\Rightarrow x=\pm5\)
c, \(\frac{x+2}{2}=\frac{1}{1-x}\Rightarrow\left(x+2\right)\left(1-x\right)=2\Rightarrow x-x^2+2-2x=2\Rightarrow-x^2-x=0\Rightarrow-x\left(x+1\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
9: =>x-3=2
=>x=5
10: =>x+1/2=1/5 hoặc x+1/2=-1/5
=>x=-7/10 hoặc x=-3/10
12:
a: =>x^2=900
=>x=30 hoặc x=-30
b: =>x=1/18*27=3/2
7: =>|x-0,4|=1,1
=>x-0,4=1,1 hoặc x-0,4=-1,1
=>x=1,5 hoặc x=-0,7
\(\left(x-1\right)^2=\left(x-1\right)^4\)
\(\Leftrightarrow x^2-2x+1=x^4-4x^3+6x^2-4x+1\)
\(\Leftrightarrow x^4-4x^3+6x^2-4x+1=x^2-2x+1\)
\(\Leftrightarrow x^4-4x^3+6x^2-4x=x^2-2x\)
\(\Leftrightarrow x^4-4x^3+6x^2-4x=x^2\)
\(\Leftrightarrow x^4-4x^3+6x^2-4x=x^2-x^2\)
\(\Leftrightarrow x^4-4x^3+5x^2-2x=0\)
\(\Leftrightarrow x\left(x-1\right)^2\left(x-2\right)=0\)
\(\Rightarrow x\in\left\{0;1;2\right\}\)
Ơ??
\(\left(x-1\right)^2=\left(x-1\right)^4\)
\(\Rightarrow\left(x-1\right)^2-\left(x-1\right)^4=0\)
\(\Rightarrow\left(x-1\right)^2.[1-\left(x-1\right)^2]=0\)
TH1: \(\left(x-1\right)^2=0\)
\(\Rightarrow x-1=0\)\(\Rightarrow x=1\)
TH2: \(1-\left(x-1\right)^2=0\)
\(\Rightarrow\left(x-1\right)^2=1\)
\(\Rightarrow\orbr{\begin{cases}x-1=-1\\x-1=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy \(x\in\left\{0;1;2\right\}\)