Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sol của tớ :3
Nếu y=0 thì x2=1 => P=2
Nếu y\(\ne\)0 .Đặt \(t=\frac{x}{y}\)
\(P=\frac{2\left(x^2+6xy\right)}{1+2xy+2y^2}=\frac{2\left(x^2+6xy\right)}{x^2+2xy+3y^2}=\frac{2\left[\left(\frac{x}{y}\right)^2+6\cdot\frac{x}{y}\right]}{\left(\frac{x}{y}\right)^2+2\frac{x}{y}+3}=\frac{2\left(t^2+6t\right)}{t^2+2t+3}\)
\(\Rightarrow P.t^2+2P\cdot t+3P=2t^2+12t\)
\(\Leftrightarrow t^2\left(P-2\right)+2t\left(P-6\right)+3P=0\)
Xét \(\Delta'=\left(P-2\right)^2-3P\left(P-6\right)=-2P^2-6P+36\ge0\)
\(\Leftrightarrow-6\le P\le3\)
Dấu bằng xảy ra khi:
Max:\(x=\frac{3}{\sqrt{10}};y=\frac{1}{\sqrt{10}}\left(h\right)x=\frac{3}{-\sqrt{10}};y=\frac{1}{-\sqrt{10}}\)
Min:\(x=\frac{3}{\sqrt{13}};y=-\frac{2}{\sqrt{13}}\left(h\right)x=-\frac{3}{\sqrt{13}};y=\frac{2}{\sqrt{13}}\)
Ta có (x+y)xy=x2+y2-xy
=> \(\frac{1}{x}+\frac{1}{y}=\frac{1}{x^2}+\frac{1}{y^2}-\frac{1}{xy}\)
<=>\(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)^2+\frac{3}{4}\left(\frac{1}{x}-\frac{1}{y}\right)^2\ge\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)^2\)
<=> \(0\le\frac{1}{x}+\frac{1}{y}\le4\)
mà \(A=\frac{1}{x^3+y^3}=\left(\frac{1}{x}+\frac{1}{y}\right)^2\le16\)
Vậy Max A =16 khi \(x=y=\frac{1}{2}\)
\(1=x+y=\frac{x}{2}+\frac{x}{2}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}\ge5\sqrt[5]{\left(\frac{x}{2}\right)^2\left(\frac{y}{3}\right)^3}\)
\(\Leftrightarrow1\ge5\sqrt[5]{\frac{x^2y^3}{108}}\Rightarrow\frac{1}{5}\ge\sqrt[5]{\frac{x^2y^3}{108}}\Rightarrow\frac{x^2y^3}{108}\le\frac{1}{3125}\)
\(\Rightarrow x^2y^3\le\frac{108}{3125}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\x+y=1\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{3}{5}\end{cases}}}\)
Vậy...