Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
Rút gọn
\(\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}}{1-x}\right)\cdot\frac{x-\sqrt{x}}{2\sqrt{x}+1}\)
\(=\left(\frac{1}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-1}\right)\cdot\frac{\sqrt{x}(\sqrt{x}-1)}{2\sqrt{x}+1}\)
\(=\left(\frac{\sqrt{x}+1}{(\sqrt{x}-1)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\frac{\sqrt{x}(\sqrt{x}-1)}{2\sqrt{x}+1}\)
\(=\frac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}+1}\)
\(=\frac{\sqrt{x}}{\sqrt{x}+1}\)
Tính:
\(\frac{3-\sqrt{3}}{\sqrt{3}+2}+\frac{\sqrt{3}}{\sqrt{3}-2}+\frac{21}{\sqrt{3}}\)
\(=\frac{3-\sqrt{3}}{\sqrt{3}+2}+\frac{\sqrt{3}}{\sqrt{3}-2}+\frac{7\sqrt{3}\cdot\sqrt{3}}{\sqrt{3}}\)
\(=\frac{3-\sqrt{3}}{\sqrt{3}+2}+\frac{\sqrt{3}}{\sqrt{3}-2}+7\sqrt{3}\)
\(=\frac{\left(3-\sqrt{3}\right)\left(\sqrt{3}-2\right)}{\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)}+\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}+7\sqrt{3}\)
\(=\frac{3\sqrt{3}-3-6+2\sqrt{3}}{\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)}+\frac{3+2\sqrt{3}}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}+7\sqrt{3}\)
\(=\frac{3\sqrt{3}-3-6+2\sqrt{3}+3+2\sqrt{3}}{3-4}+7\sqrt{3}\)
\(=\frac{7\sqrt{3}-6}{-1}+7\sqrt{3}\)
\(=6-7\sqrt{3}+7\sqrt{3}\)
\(=6\)
Bài làm
\(\sqrt{42-10\sqrt{17}}+\sqrt{\left(\sqrt{17}-\sqrt{16}\right)^2}\)
\(=\sqrt{42-10\sqrt{17}}+\left|\sqrt{17}-\sqrt{16}\right|\)
\(=\sqrt{25-10\sqrt{17}+17}+\sqrt{17}-\sqrt{16}\)
\(=\sqrt{\left(5-\sqrt{17}\right)^2}+\sqrt{17}-\sqrt{16}\)
\(=\left|5-\sqrt{17}\right|+\sqrt{17}-\sqrt{16}\)
\(=5-\sqrt{17}+\sqrt{17}-\sqrt{16}\)
\(=5-4\)
\(=1\)
\(a^3=3+\sqrt{17}+3-\sqrt{17}+3.\sqrt[3]{3^2-17}\left(\sqrt[3]{3+\sqrt{17}}+\sqrt[3]{3-\sqrt{17}}\right)\)
\(a^3=6-3.2a\)
\(f\left(a\right)=\left(a^3+6x-5\right)^{2017}=\left(a^3+6-6a+6a-5\right)^{2017}=1^{2017}=1\)
\(a=\sqrt[3]{3+\sqrt{17}}+\sqrt[3]{3-\sqrt{17}}\Rightarrow a^3=3+\sqrt{17}+3-\sqrt{17}+3\sqrt{\left(3+\sqrt{17}\right)\left(3-\sqrt{17}\right)}\left(\sqrt[3]{3+\sqrt{17}}+\sqrt[3]{3-\sqrt{17}}\right)\\ =6+3a.\sqrt[3]{9-17}\\ =6-6a\\ \Rightarrow f\left(a\right)=\left(a^3+6a-5\right)^{2015}=\left(6-6a+6a-5\right)^{2015}=1\)
\(a,\sqrt{\frac{5.\left(38^2-17^2\right)}{8.\left(47^2-19^2\right)}}\)
\(=\sqrt{\frac{5.\left(38-17\right)\left(38+17\right)}{8.\left(47-19\right)\left(47+19\right)}}\)
\(=\sqrt{\frac{5.21.55}{8.28.66}}\)
\(=\sqrt{\frac{5775}{14784}}=\frac{5\sqrt{231}}{2\sqrt{4370}}\)
a) \(H=\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=\sqrt{\left(9-\sqrt{17}\right)\left(9+\sqrt{17}\right)}\)
\(=\sqrt{81-17}=\sqrt{64}=8\)
b) \(K=\left(\sqrt{20}-3\sqrt{5}+\sqrt{80}\right).\sqrt{5}\)
\(=\sqrt{20}.\sqrt{5}-3\sqrt{5}.\sqrt{5}+\sqrt{80}.\sqrt{5}\)
\(=\sqrt{100}-3.5+\sqrt{400}=\sqrt{10^2}-15+\sqrt{20^2}\)
\(=10-15+20=15\)
\(H=\sqrt{9-\sqrt{17}}\cdot\sqrt{9+\sqrt{17}}\)
\(=\sqrt{\left(9-\sqrt{17}\right)\left(9+\sqrt{17}\right)}\)
\(=\sqrt{9^2-\left(\sqrt{17}\right)^2}\)
\(=\sqrt{81-17}\)
\(=\sqrt{64}=8\)
\(K=\left(\sqrt{20}-3\sqrt{5}+\sqrt{80}\right)\cdot\sqrt{5}\)
\(=\sqrt{20}\cdot\sqrt{5}-3\sqrt{5}\cdot\sqrt{5}+\sqrt{80}\cdot\sqrt{5}\)
\(=\sqrt{20\cdot5}-3\sqrt{5\cdot5}+\sqrt{80\cdot5}\)
\(=\sqrt{100}-3\sqrt{25}+\sqrt{400}\)
\(=10-3\cdot5+20\)
\(=15\)
\(x^3=6+3x.\sqrt[3]{3^2-17}=6-6x\)
\(\Leftrightarrow x^3+6x-6=0\)
\(\Rightarrow B=\left(x^3+6x-6+1\right)^{2012}=1^{2012}=1\)
cảm ơn nhìu nhìu nhìu