Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\text{Δ}=\left(-m\right)^2-4\left(m-2\right)=m^2-4m+8=\left(m-2\right)^2+4>0\)
=>Phương trình luôn có hai nghiệm phân biệt
Theo đề, ta có: m-2<0
=>m<2
2: \(\Leftrightarrow\dfrac{x_1^2+1}{x_1}\cdot\dfrac{x_2^2+1}{x_2}=9\)
\(\Leftrightarrow\dfrac{\left(x_1\cdot x_2\right)^2+\left(x_1+x_2\right)^2-2x_1x_2+1}{x_1x_2}=9\)
\(\Leftrightarrow\dfrac{\left(m-2\right)^2+\left(-m\right)^2-2\left(m-2\right)+1}{m-2}=9\)
\(\Leftrightarrow m^2-4m+4+m^2-2m+4+1=9m-18\)
\(\Leftrightarrow2m^2-6m+9-9m+18=0\)
=>2m^2-15m+27=0
hay \(m\in\varnothing\)
3: =>m=0
\(A=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{\left(-\dfrac{5}{\sqrt{3}}\right)^2-4\cdot\dfrac{-\sqrt{2}}{\sqrt{3}}}=\sqrt{\dfrac{25+4\sqrt{6}}{3}}\)
Câu a hạ bậc rồi áp dụng cosa + cosb
Câu b thì mối liên hệ giữa tan với cot là ra
\(\left\{{}\begin{matrix}x^2+y+xy\left(x^2+y\right)+xy=-\frac{5}{4}\\x^4+y^2+2x^2y+xy=-\frac{5}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+y\right)\left(xy+1\right)+xy=-\frac{5}{4}\\\left(x^2+y\right)^2+xy=-\frac{5}{4}\end{matrix}\right.\)
Trừ vế cho vế: \(\left(x^2+y\right)\left(x^2+y-xy-1\right)=0\)
\(\Leftrightarrow\left(x^2+y\right)\left(x-1\right)\left(x+1-y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=x+1\\y=-x^2\end{matrix}\right.\) thế vào pt đầu và giải bt
Câu 1 :
Ta có :
\(\Delta=\left(m-1\right)^2-4.\left(2m-7\right)\)
\(=m^2-2m+1-8m+28\)
\(=m^2-10m+27>0\)
Do đó pt luôn có 2 nghiệm phân biệt
Theo bài ra :
\(\left(x+5\right)\left(x^2-1\right)\left(3-x\right)>0\)
<=> \(\left(x+5\right)\left(x-1\right)\left(x+1\right)\left(3-x\right)>0\)
Đặt \(\left(x+5\right)\left(x-1\right)\left(x+1\right)\left(3-x\right)=A\)
Ta có bảng xét dấu :
\(-\infty\) | -5 | -1 | 1 | 3 | \(+\infty\) | ||||
(x+5) | - | 0 | + | + | + | + | |||
x2-1 | + | + | 0 | - | 0 | + | + | ||
3-x | + | + | + | + | 0 | - | |||
A | - (loại) | 0 (loại) | +(t.m) | 0(loại) | -(loại) | 0(loại) | +(t.m) | 0(loại) | -(loại) |
Từ bảng xét dấu trên suy ra :
\(A>0\Rightarrow\left[{}\begin{matrix}-5< x< -1\\1< x< 3\end{matrix}\right.\)
Để phương trình có hai nghiệm thì \(\Delta\ge0\)\(\Leftrightarrow m^2-4\ge0\) \(\Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\).
Theo định lý Vi-et: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=1\end{matrix}\right.\).
Khi đó: \(A=\dfrac{\left(x_1-x_2\right)^2}{x_1+x_2-1}=\dfrac{\left(x_1+x_2\right)^2-4x_1x_2}{x_1+x_2-1}=\dfrac{\left(-m\right)^2-4.1}{-m-1}\)\(=-\dfrac{m^2-4}{m+1}\)\(=-\dfrac{m\left(m+1\right)-\left(m+1\right)-3}{m+1}\)\(=-m-1-\dfrac{3}{m+1}\).
Để A có giá trị nguyên thì \(m+1\inƯ\left(3\right)\) .
Suy ra \(m+1\in\left\{-1;1;-3;3\right\}\).
m + 1 = -1 thì m = - 2.
m + 1 = 1 thì m = 0. (loại).
m + 1 = -3 thì m = -4.
m + 1 = 3 thì m = 2.