\(\alpha\) là góc nhọn

a) CMR: \(\tan\alpha+\cot\alpha\ge2...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2015

\(tan^3a+cot^3a=\frac{sin^3a}{cos^3a}+\frac{cos^3a}{sin^3a}\ge2\sqrt{\frac{sin^3a}{cos^3a}.\frac{cos^3a}{sin^3a}}=2\)

1 tháng 7 2018

a)\(\sin\alpha=\dfrac{9}{15}\Rightarrow\sin^2\alpha=\dfrac{81}{225}\)

Có: \(\sin^2\alpha+\cos^2\alpha=1\)

\(\Rightarrow\cos^2\alpha=1-\sin^2\alpha=1-\dfrac{81}{225}=\dfrac{144}{225}\)

\(\Rightarrow\cos\alpha=\sqrt{\dfrac{144}{225}}=\dfrac{12}{15}=\dfrac{4}{5}\)

\(\Rightarrow\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{9}{15}:\dfrac{4}{5}=\dfrac{3}{4}\)

\(\cot\alpha=\dfrac{\cos\alpha}{\tan\alpha}=\dfrac{4}{5}:\dfrac{9}{15}=\dfrac{4}{3}\)

b)\(\cos\alpha=\dfrac{3}{5}\Rightarrow\cos^2\alpha=\dfrac{9}{25}\)

Có: \(\sin^2\alpha+\cos^2\alpha=1\)

\(\Rightarrow\sin^2\alpha=1-\cos^2\alpha=1-\dfrac{9}{25}=\dfrac{16}{25}\)

\(\Rightarrow\sin\alpha=\dfrac{4}{5}\)

\(\Rightarrow\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{4}{5}:\dfrac{3}{5}=\dfrac{4}{3}\)

\(\cot\alpha=\dfrac{\cos\alpha}{\sin\alpha}=\dfrac{3}{5}:\dfrac{4}{5}=\dfrac{3}{4}\)

2 tháng 7 2018

thank

8 tháng 7 2019

cộng hai vế ta được: 2tan\(\alpha\)=\(\frac{31}{12}\)\(\Rightarrow\)tan\(\alpha\)=\(\frac{31}{24}\)

=> cot\(\alpha\)=\(\frac{17}{24}\)

8 tháng 7 2019

mik nham r . hai cau nay rieng biet nha , ko lien quan j toi nhau 

27 tháng 6 2017

a.Ta có \(\tan\alpha.\cot\alpha=1\Rightarrow\tan\alpha=\frac{1}{\cot\alpha}\)

\(\Rightarrow\frac{1}{\cot\alpha}+\cot\alpha=2\Rightarrow\cot^2\alpha-2\cot\alpha+1=0\)

\(\cot\alpha=1\Rightarrow\alpha=45^0\)

b.Ta có \(\sin^2\alpha+\cos^2\alpha=1\Rightarrow\cos^2\alpha=1-\sin^2\alpha\)

\(\Rightarrow7.\sin^2\alpha+5\left(1-\sin^2\alpha\right)=\frac{13}{2}\)\(\Leftrightarrow\sin^2\alpha=\frac{3}{4}\Leftrightarrow\orbr{\begin{cases}sin\alpha=\frac{\sqrt{3}}{2}\\sin\alpha=\frac{-\sqrt{3}}{2}\end{cases}}\)

\(\Rightarrow\alpha=60^0\)

23 tháng 8 2017

Ta có:

\(\hept{\begin{cases}cosa-sina=\frac{1}{5}\\sin^2a+cos^2a=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}cosa=\frac{1}{5}+sina\left(1\right)\\sin^2a+\left(\frac{1}{5}+sina\right)^2=1\left(2\right)\end{cases}}\)

\(\Rightarrow\left(2\right)\Leftrightarrow25sin^2a+5sina-12=0\)

\(\Leftrightarrow\orbr{\begin{cases}sina=-\frac{4}{5}\left(l\right)\\sina=\frac{3}{5}\end{cases}}\)

\(\Rightarrow cosa=\frac{4}{5}\)

\(\Rightarrow\hept{\begin{cases}tana=\frac{3}{4}\\cota=\frac{4}{3}\end{cases}}\)

22 tháng 8 2017

Gấp gáp chi em cuộc sống vẫn rực rỡ sắc màu

Chim vẫn reo ca và môi hôn đang đứng đợi

Hoa vẫn nở và xuân thì đương tới

Hãy trải lòng xao xuyến với tình yêu.

24 tháng 10 2017

2. \(\left(\sin a+\cos a\right)^2+\left(\sin a-\cos a\right)^2+2\)

\(=\sin^2a+2.\sin a.\cos a+\cos^2a+\sin^2a\cdot2.\sin a.\cos a+\cos^2a+2\)

\(=2\sin^2a+2\cos^2a+2\)

\(=2\left(\sin^2a+\cos^2a\right)+2\)

\(=2.1+2=4\)

=> biểu thức trên ko phụ thuộc vào a

24 tháng 10 2017

1. a.) \(\cot a=\dfrac{1}{\tan a}=\dfrac{1}{\sqrt{3}}\)

\(\tan\sqrt{3}=60\Rightarrow a=60^o\)

\(\sin60=\dfrac{\sqrt{3}}{2}\)

\(\cos60=\dfrac{1}{2}\)

b.) \(\cos^2a=1-\left(\dfrac{15}{17}\right)^2=\dfrac{64}{289}\Rightarrow\cos a=\dfrac{8}{17}\)

\(\tan a=\dfrac{\sin a}{\cos a}=\dfrac{\dfrac{15}{17}}{\dfrac{8}{17}}=\dfrac{15}{17}.\dfrac{17}{8}=\dfrac{15}{8}\)