Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{n-2}{n+9}=\frac{n}{n+9}-\frac{2}{n+9}\)(n thuộc N*). Vì \(\frac{n}{n+8}>\frac{n}{n+9}\)nên \(\frac{n}{n+8}>\frac{n}{n+9}>\frac{n}{n+9}-\frac{2}{n+9}\)
Ta có :
\(\frac{n-2}{n+9}=\frac{n}{2+9}-\frac{2}{2+9}\)\(\left(n\in N\text{*}\right)\)
Vì \(\frac{n}{n+8}>\frac{n}{n+9}\)
\(\Rightarrow\frac{n}{n+8}>\frac{n}{n+9}>\frac{n}{n+9}-\frac{2}{n+9}\)
\(\Leftrightarrow\frac{n}{n+8}>\frac{n}{n+9}>\frac{n-2}{n+9}\)
\(\frac{\Rightarrow n}{n+8}>\frac{n-2}{n+9}\)
a) Với a>b thì => (a+n).b=ab+bn>ab+an=a(b+n)=>(a+n).b>a.(b+n)
=> \(\frac{a+n}{b+n}>\frac{a}{b}\)
Với b>a thì chứng minh tương tự ta được \(\frac{a+n}{b+n}< \frac{a}{b}\)
Với a=b thì chứng minh tương tự ta được \(\frac{a+n}{b+n}=\frac{a}{b}\)
cho \(A=\frac{10^{11}-1}{10^{12}-1}\) và \(B=\frac{10^{10}+1}{10^{11}+1}\)
giải
Ta có
\(A=\frac{10^{11}-1}{10^{12}-1}\)
\(\Rightarrow10.A=\frac{10^{12}-10}{10^{12}-1}=1-\frac{9}{10^{12}-1}\)
\(B=\frac{10^{10}+1}{10^{11}+1}\)
\(\Rightarrow10.B=\frac{10^{11}+10}{10^{11}+1}=1+\frac{9}{10^{11}+1}\)
VÌ 10.B > 1 và 10.A < 1
=> 10.B > 10.A
=> B > A
vậy A < B
Ta có: n/n+11<n/n+10 và n/n+11>n-1/n+11
suy ra n-1/n+11<n/n+11<n/n+10
vậy n/n+10>n-1/n+11
Chuẩn