Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}\frac{2}{2\sqrt{n}}< \frac{2}{\sqrt{n-1}+\sqrt{n}}=2\left(\sqrt{n}-\sqrt{n-1}\right)\\\frac{2}{2\sqrt{n}}>\frac{2}{\sqrt{n+1}+\sqrt{n}}=2\left(\sqrt{n+1}-\sqrt{n}\right)\end{cases}}\)
Từ đây ta có:
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}< 2\left(\sqrt{1}-\sqrt{0}+\sqrt{2}-\sqrt{1}+...+\sqrt{n}-\sqrt{n-1}\right)\)
\(=2\left(\sqrt{n}-0\right)=2\sqrt{n}\)
Tương tự ta có:
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{n+1}-\sqrt{n}\right)\)
\(=2\left(\sqrt{n+1}-1\right)>\sqrt{n}\)
Gọi \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}=A\)là A
Có \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{3}}>...>\frac{1}{\sqrt{n}}\)
=> \(A>n.\frac{1}{\sqrt{n}}=\sqrt{n}\)(1)
Ta có: \(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}=2\left(\sqrt{n}+\sqrt{n-1}\right)\)
=> \(\frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)
Khi đó: \(\frac{1}{\sqrt{1}}< 2\left(\sqrt{1}-\sqrt{0}\right)\)
\(\frac{1}{\sqrt{2}}< 2\left(\sqrt{2}-\sqrt{1}\right)\)
...
\(\frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)
=> \(A< 2\left(\sqrt{n}-\sqrt{n-1}+...+\sqrt{1}\right)\)
=> \(A< 2\sqrt{n}\)(2)
Từ (1) và (2) => \(\sqrt{n}< A< 2\sqrt{n}\)
Mấy bài này đã có người làm rồi nhé bạn vào câu hỏi tương tự mà xem.