K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2016

Gọi d là ƯCLN(3n+2; 15n+7)
=> 3n+2:d;15n+7:d
=>5(3n+2)-(15n+7):d
=> 15n+10-15n-7:d
=> 3 \(:\) d =>d \(\in\)  (1;3)( vì d là UCLN nên chỉ có thể là số dương)
Do trong 3n+2 và 15n+7 sẽ có 1 số chẵn và 1 số lẻ => ƯC(3n+2;15n+7)\(\ne\) 2
Vậy d=1
=> 3n+2 và 15n+7 là 2 số nguyên tố cùng nhau 

10 tháng 5 2016

Nếu như 3n+2 và 15n+7 là 2 số nguyên tố cùng nhau

=> ƯCLN(3n+2;15n+7)= 1 (cũng có thể là -1 nhưng vì n là số tự nhiên nên ƯCLN của chúng chỉ bằng 1)

Gọi ƯCLN(3n+2;15n+7)=d

=> 3n+2 chia hết cho d và 15n+7 cũng chia hết cho d

=> 5(3n+2) chia hết cho d và 15n+7 cũng chia hết cho d

=> 15n+10 chia hết cho d và 15n+7 cũng chia hết cho d

=> (15n+10)-(15n+7) chia hết cho d

=> 3 chia hết cho d

=> d=1;3

Vậy ƯCLN(3n+2;15n+7) có thể bằng 1 và cũng có thể bằng 3

=>Chúng chưa chắc là 2 số nguyên tố cùng nhau

Nếu sai thì các bạn thông cảm nha

5 tháng 1 2016

Giả sử: (2n+5;3n+7)=d
2n+5=3(2n+5)=6n+15 chc d
3n+7=2(3n+7)=6n+14 chc d
                      1 chia hết cho d
=> d=1 vậy 2n+5 và 3n+7 nguyên tố cùng nhau

23 tháng 12 2017

a) Gọi ƯCLN (n + 3; n + 2) = d.

Ta thấy (n + 3) chia hết cho d; (n+2) chia hết cho d=>[(n + 3)- (n + 2)] chia hết cho d =>l chia hết cho d

Nên d = 1. Do đó n + 3 và n + 2 là hai số nguyên tố cùng nhau.

b) Gọi ƯCLN (3n+4; 3n + 7) = đ.

Ta thấy (3n + 4) chia hết cho d;(3n+7) chia hết cho d =>[(3n+7) - (3n + 4)] chia hết cho d =>3 chia hết cho d nên

d = 1 hoặc d = 3.

Mà (3n + 4) không chia hết cho 3; (3n + 7) không chia hết cho 3 nên d = 1. Ta có điều phải chứng minh.

c) Gọi ƯCLN (2n + 3; 4n + 8) = d.

Ta thấy (2n + 3) chia hết cho d ; (4n + 8) chia hết cho d => [(4n + 8) - 2.(2n +3)] chia hết cho d => 2 chia hết cho d

nên d = 1 hoặc d = 2.

Mà (2n+3) không chia hết cho 2 nên d = 1. Ta có điều phải chứng minh.

9 tháng 8 2023

giúp mình với😓mình đang vội!

9 tháng 8 2023

Chứng minh:

A:5n+2 và 8n+3 là 2 số nguyên tố cùng nhau với mọi số tự nhiên N

B:6n+5 và 8n+4 là 2 số nguyên tố cùng nhau với mọi số tự nhiên N

k biết có giúp được bạn k?

~chúc bạn học tốt~

29 tháng 12 2021

Gọi d là ƯCLN(2n+1, 3n+2)

Ta có: 2n+1 chia hết cho d, 3n+2 chia hết cho d

=> 2(3n+2) - 3(2n+1) chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy 2n+1 và 3n+2 là 2 số nguyên tố cùng nhau

cre: h 

30 tháng 10 2023

TÔI KO BIẾT

 

24 tháng 11 2016

Bài này dễ nhưng trình bày hơi dài

24 tháng 11 2016

Câu của mình giống của bạn.

29 tháng 12 2021

Đặt \(ƯCLN\left(2n+1,3n+2\right)=d\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)

\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)\(\Rightarrow1⋮d\)

Mà \(d\inℕ^∗\)\(\Rightarrow d=1\)

Từ đó \(ƯCLN\left(2n+1,3n+2\right)=1\)

Và ta kết luận với mọi \(n\inℕ\)thì \(2n+1\)và \(3n+2\)nguyên tố cùng nhau.

29 tháng 12 2021

Ta có 2n+1 =6n+3

3n+2=6n+4

gọi d là ước của 6n+3 và 6n+4

Ta có (6n+3)-(6n+4) chia hết cho d

=> 1 chia hết cho d

=> d=1

vậy 2n+1 and n+2 là 2 số nguyên tố cùng nhau

31 tháng 3 2021

a)Sai => Vì số 1 và 0 không phải là số nguyên tố cũng không phải là hợp số.

b)Sai => Vì có 2 là số nguyên tố chẵn duy nhất

c)Đúng

d)Đúng

a) Sai vì có 0 hoặc 1 vừa không là nguyên tố cũng không là hợp số

b) Sai vì 2 cũng là số nguyên tố nhưng 2 là số chẵn

c) Đúng

d) Sai vì số 1 không có ước nguyên tố