K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2019

Thử ha! Lâu không làm quên mất cách làm rồi má ơi:((

Giả sử \(n^k⋮n-1\left(1\right)\Rightarrow n⋮n-1\) Vì:

Nếu n không chia hết cho n - 1 thì khi phân tích ra thừa số nguyên tố, n không chứa n - 1 nên nk cũng không chưa thừa số nguyên tố n - 1 suy ra nk không chia hết cho n - 1. Mâu thuẫn với điều giả sử (1)

Vậy \(n⋮n-1\Leftrightarrow\left(n-1\right)+1⋮\left(n-1\right)\Rightarrow1⋮\left(n-1\right)\)

Suy ra \(n-1\inƯ\left(1\right)=1\left(\text{không xét }-1\text{ vì n\ge3 nên }n-1\text{dương. Do vậy ta chỉ xét ước dương}\right)\Rightarrow n=2\)

Mà n = 2 không thỏa mãn đk nên không tồn tại n > 3 thỏa mãn n chia hết cho n - 1 tức là không tồn tại nk chia hết cho n - 1 (mẫu thuẩn với điều giả sử)

Do vậy ta có đpcm.

P/s: Sai thì thôi nhá, quên mất cách làm mọe rồi

3 tháng 11 2019

nk-1=(n-1)(nk-1-nk-2....+1) chia hết cho n-1

Ta thấy :

36n-1 - k . 33n-2 + 1 ⋮ 7 <=> 9 . ( 36n-1 - k . 33n-2 + 1 ) ⋮ 7

<=> 36n+1 - k . 33n + 9 ⋮ 7

Vì 36n+1 ≡ 3 ( mod 7 ) , suy ra 36n+1 + 9 ≡ 5 ( mod 7 )

Do đó để 36n+1 - k . 3 + 9 ⋮ 7 thì k . 33n ≡ 5 ( mod 7 )

Từ đó ta chứng minh được : Nếu n chẵn thì k ≡ 5 ( mod 7 ) , còn nếu n lẻ thì k ≡ -5 ( mod 7 )

Ta thấy :

36n-1 - k . 33n-2 + 1 ⋮ 7 <=> 9 . ( 36n-1 - k . 33n-2 + 1 ) ⋮ 7

<=> 36n+1 - k . 33n + 9 ⋮ 7

Vì 36n+1 ≡ 3 ( mod 7 ) , suy ra 36n+1 + 9 ≡ 5 ( mod 7 )

Do đó để 36n+1 - k . 3 + 9 ⋮ 7 thì k . 33n ≡ 5 ( mod 7 )

Từ đó ta chứng minh được : Nếu n chẵn thì k ≡ 5 ( mod 7 ) , còn nếu lẻ thì k ≡ -5 ( mod 7 )

13 tháng 4 2015

32+n -22+n +3n -2n+3n-2n =32 .3n -22 .2n +3n -2n

                                            =9.3n -4.2n +3n -2n

                                            =(9.3n +3n) -4.2n -2n

                                            =3n (9+1) - (4.2n +2n)

                                 =3n .10 - 2n (4+1)

                                  =3n .10 - 2n .5

                        ; 2n chia hết cho 2; 5 chia hết ch3n .10 - 2n .5o 5 nên 2n .5 chia hết cho 10 và 3n .10 chia hết cho 10

nên 3n .10 - 2n .5 chia hết cho 10

 

13 tháng 1 2017

32+n -22+n +3n -2n+3n-2n =32 .3n -22 .2n +3n -2n

                                            =9.3n -4.2n +3n -2n

                                            =(9.3n +3n) -4.2n -2n

                                            =3n (9+1) - (4.2n +2n)

                                 =3n .10 - 2n (4+1)

                                  =3n .10 - 2n .5

                        ; 2n chia hết cho 2; 5 chia hết ch3n .10 - 2n .5o 5 nên 2n .5 chia hết cho 10 và 3n .10 chia hết cho 10

nên 3n .10 - 2n .5 chia hết cho 10

27 tháng 12 2016

4n+2 -3n+2 - 4n - 3n 

= 4n+2 - 4n - 3n+2 - 3n 

= 4n ( 42 - 1 ) - 3n ( 32 + 1 )

= 4n .15 - 3n.10

= 4n-1.4.15 - 3n-1.3.10

= 4n-1.60 - 3n-1.30

= 30.( 4n-1.2 - 3n-1 ) chia hết cho 30 ( đpcm )

4 tháng 9 2015

ta có:  3n.3- 2n.22+3n-2n  =  3n(32+1) - 2n(22+1)

= 3n.10 - 2n.5 = 3n.10 - 10n

vì 10 chia hết cho 10 => 3n.10 chia het cho 10 va 10n chia het cho 10

Vậy  3n.10 - 10chia het cho 10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9 tháng 12 2015

mình nghĩ là hoàng anh tú sai vì 2 số có cùng số mũ thi mới nhân 2 cơ số lại với nhau được chứ

2 tháng 4 2017

\(3^{n+2}-2^{n+2}+3^n-2^n\) \(⋮\)\(10\)

Ta có : \(3^{n+2}-2^{n+2}+3^n-2^n\)

          \(=9\times3^n-4\times2^n+3^n-2^n\)

          \(=10\times3^n-5\times2\times2^{n-1}\)

          \(=10\times\left(3^n-2^{n-1}\right)\)    

         \(\Rightarrow\)\(3^{n+2}-2^{n+2}+3^n-2^n\)\(⋮\)10

2 tháng 4 2017

3n+2-2n+2+3n-2n=3n+2+3n-2n+2-2n=3n.32+3n-2n.22-2n=3n.(32+1)-2n(22+1)=3n.10-2n.5=3n.10-2n-1.10=10.(3n-2n-1)

=>3n+2-2n+2+3n-2n chia hết cho 10

4 tháng 8 2015

nhìn thấy thì chóng mặt

chỉ cần làm 1 trong 8 câu là đủ rồi