Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với giá trị nguyên nào của x thì các biểu thức sau có giá trị lớn nhất A= 12+12/5-x; B = 37-3x/10-x.
A = 12 + \(\frac{12}{x-5}\)
=> Để A có giá trị lớn nhất thì \(\frac{12}{x-5}\)phải có giá trị lớn nhất => x -5 phải có giá trị nhỏ nhất và có cùng dấu với 12(1)
Mà x là số nguyên => x - 5 cũng là 1 số nguyên (2)
Từ (1) và (2) suy ra: (x-5) phải là ước nguyên dương nhỏ nhất của 12 => x - 5 = 1 <=> x = 6
\(B=\frac{37-3x}{10-x}\)
Biến đổi \(B=\frac{37-3x}{10-x}=\frac{3\left(10-x\right)+7}{10-x}=3+\frac{7}{10-x}\)
Xét x > 10 thì B < 0 (1)
Xét x < 10 thì mẫu 10 - x là số nguyên dương . Phân số B có tử và mẫu đều dương,tử không đổi nên B lớn nhất \(\Leftrightarrow\)mẫu 10 - x nhỏ nhất \(\Leftrightarrow10-x=1\Leftrightarrow x=9\).Khi đó A = 10 (2)
So sánh (1) và (2) , ta thấy GTLN của A là 10 khi và chỉ khi x = 9
Bài làm:
Ta có: \(A=\frac{37-3x}{10-x}=\frac{\left(30-3x\right)+7}{10-x}=\frac{3\left(10-x\right)+7}{10-x}=3+\frac{7}{10-x}\)
Để A có giá trị lớn nhất => \(\frac{7}{10-x}\)phải đạt giá trị lớn nhất
=> \(10-x\)đạt nhỏ nhất có thể
Mà \(10-x< 0\)\(\Rightarrow\frac{7}{10-x}< 0\)
=> \(10-x>0\), mà x nguyên => \(10-x\)nguyên dương
=> Để \(\frac{7}{10-x}\)đạt giá trị lớn nhất => \(10-x=1\Leftrightarrow x=9\)
Khi đó \(A=3+7=10\)
Vậy \(Max\left(A\right)=10\)khi \(x=9\)
Học tốt!!!!
Với giá trị nguyên nào của x thì biểu thức A = 14-x/4-x có giá trị lớn nhất ? Tìm giá trị đó
A = 14 - x / 4 - x
để A có giá trị lớn nhất thì A > 0 = > x < 4 = 4 -x bé nhất
= > x = { 1 ; 2 ; 3 }
để 4 trừ x bé nhất thì x = 3
giá trị đó là : 14 - 3 / 4 - 3 = 11 / 1 = 11
ta có :
A = 14 - x / 4 - x
để A có giá trị lớn nhất thì A > 0 = > x < 4 = 4 -x bé nhất
= > x = { 1 ; 2 ; 3 }
để 4 trừ x bé nhất thì x = 3
giá trị đó là : 14 - 3 / 4 - 3 = 11 / 1 = 11
Biến đổi D = \(\frac{4-x+10}{4-x}=1+\frac{10}{4-x}\)
D lớn nhất \(\Leftrightarrow\)\(\frac{10}{4-x}\)lớn nhất
Xét x > 4 thì \(\frac{10}{4-x}< 0\)
Xét x < 4 thì \(\frac{10}{4-x}>0\). Phân số \(\frac{10}{4-x}\) có tử và mẫu đều dương, tử không đổi nên có giá trị lớn nhất khi mẫu nhỏ nhất. Mẫu \(4-x\)là số nguyên dương,nhỏ nhất khi \(4-x=1\)tức là \(x=3\). Khi đó
\(\frac{10}{4-x}=10\)
So sánh ( 1 ) và ( 2 ) , ta thấy \(\frac{10}{4-x}\)lớn nhất bằng 10. Vậy GTLN của D bằng 11 \(\Leftrightarrow\)x = 3
\(A=x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)
Vậy GTNN A là 6 khi x - 2 = 0 <=> x = 2
\(B=\left(1-x\right)\left(3x-4\right)=3x-4-3x^2+4x=-3x^2+7x-4\)
\(=-3\left(x^2-\frac{7}{3}x+\frac{4}{3}\right)=-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{1}{36}\right)=-3\left(x-\frac{7}{6}\right)^2+\frac{1}{12}\ge\frac{1}{12}\)
\(=3\left(x-\frac{7}{6}\right)^2-\frac{1}{12}\le-\frac{1}{12}\)Vậy GTLN B là -1/12 khi x = 7/6
\(C=3x^2-9x+5=3\left(x^2-3x+\frac{5}{3}\right)=3\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{7}{12}\right)\)
\(=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)Vậy GTNN C là -7/4 khi x = 3/2
\(D=-2x^2+5x+2=-2\left(x^2-\frac{5}{2}x-1\right)=-2\left(x^2-2.\frac{5}{4}x+\frac{25}{16}-\frac{41}{16}\right)\)
\(=-2\left(x-\frac{5}{4}\right)^2+\frac{21}{8}\le\frac{21}{8}\)Vậy GTLN D là 21/8 khi x = 5/4
mik giải theo cái 37-3x/10-x nha Azure phan bảo linh
cái pải z ko bn
bài toán :
\(\frac{37-3x}{10}-x\)
Rút gọn biểu thức:
\(\frac{-\left(13x-37\right)}{10}\)
Hoặc là : Phân tích thành nhân tử
\(\frac{18\frac{1}{2}-\frac{13x}{2}}{5}\)\(nha\)