Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)để A=3/x-1 A thuộc Z
=>3 chia hết x-1
=>x-1\(\in\){1,-1,3,-3}
=>x\(\in\){2,0,4,-2}
b)để B=x-2/x+3 thuộc Z
=>x-2 chia hết x+3
<=>(x+3)-5 chia hết x+3
=>5 chia hết x+3
=>x+3\(\in\){1,-1,5,-5}
=>x\(\in\){-2,-4,2,-8}
c)để C=2x+1/x-3 thuộc Z
=>2x+1 chia hết x-3
<=>[2(x-3)+7] chia hết x-3
=>7 chia hết x-3
=>x-3\(\in\){1,-1,7,-7}
=>x\(\in\){4,2,10,-4}
d)để D=x^2-1/x+1 thuộc Z
=>x^2-1 chia hết x+1
tự làm tiếp
a) Dễ x - 1 là Ư(3) lập bảng là ra :
b) Ta có : \(B=\frac{x-2}{x+3}=\frac{x+3-5}{x+3}=\frac{x+3}{x+3}-\frac{5}{x+3}=1-\frac{5}{x+3}\)
Để B nguyên thì : x + 3 thuộc Ư(5) = {-5;-1;1;5}
=> x thuộc {-8;-4;-2;2}
c) \(C=\frac{2x+1}{x-3}=\frac{2x-6+7}{x-3}=\frac{2x-6}{x-3}+\frac{7}{x-3}=2+\frac{7}{x-3}\)
Giải tương tự như ý trên
d) \(D=\frac{x^2-1}{x+1}=\frac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)}=\frac{x-1}{1}=x-1\)
Vậy với mọi x thuộc Z thì D nguyên
để B= (x-2)/(x+3) có giá trị là 1 số nguyên
=>x-2 chia hết x+3
<=>(x+3)-5 chia hết x+3
=>5 chia hết x+3
=>x+3\(\in\){1,-1,5,-5}
=>x\(\in\){-2,-4,2,-8}
phần C tương tự
phân tích thành ((x+3) -5)/(x+3) = 1 - 5/(x+3), từ đó suy ra x = 2 ....
Ta có \(\frac{2x+1}{x-3}=\frac{2x-6+7}{x-3}=\frac{2\left(x-3\right)+7}{x-3}=2+\frac{7}{x+3}\)
Vì \(2\inℤ\Rightarrow C\inℤ\Leftrightarrow\frac{7}{x-3}\inℤ\)
=> \(7⋮x-3\)
=> \(x-3\inƯ\left(7\right)\)
=> \(x-3\in\left\{-1;-7;1;7\right\}\)
=> \(x\in\left\{2;-4;4;10\right\}\)
Vậy C\(\inℤ\Leftrightarrow x\in\left\{2;-4;4;10\right\}\)
\(C=\frac{2x+1}{x-3}=\frac{2\left(x-3\right)+7}{x-3}=2+\frac{7}{x-3}\)
Để C nguyên => \(\frac{7}{x-3}\)nguyên
=> \(7⋮x-3\)
=> \(x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
x-3 | 1 | -1 | 7 | -7 |
x | 4 | 2 | 10 | -4 |
Vậy x thuộc các giá trị trên
để A là số nguyên thì 2x+1 chia hết cho x-3
ta có:2x+1 chia hết cho x-3
2x-6+7 chia hết cho x-3
2x-2.3+7 chia hết cho x-3
2 (x-3)+7 chia hết cho x-3
2 (x-3) chia hết cho x-3 thì 7 chia hết cho x-3
x-3 thuộc ước của 7. đến đây thì bạn tự làm đc r.
để A=\(\frac{13}{x+1}\) nguyên thì 13 phải chi hết cho (x+1)
=>(x+1)\(\in\) Ư(13)={ \(\pm\)1; \(\pm\) 13}
TH1 nếu x+1= -1 => x = -1-1=-2 (thoả mãn)
TH2 nếu x+1= 1 => x = 1-1=0 (thoả mãn)
TH3 nếu x+1 = -13 => x = -13-1=-14 ( thoả mãn)
TH4 nếu x+1 = 13 => x=13 - 1 =12(thoả mãn)
Vậy x={ -14 ; -2; 0; 12 } thì A có giá trị nguyên.
Để A nguyên => 3 chia hết n-1
=> n-1 thuộc Ư(3)={-1;1;-3;3}
=>n={0;2;-3;4}
a) Vì \(\frac{3}{n-1}\) là 1 số nguyên => 3 chia hết cho n-1 \(\Rightarrow n-1\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)
Ta có bảng sau:
Vậy n={2;4;0;-2}
b) Vì \(\frac{x-2}{x+3}\) là số nguyên => (x+3)-5 chia hết cho (x+3)
Mà (x+3) chia hết cho (x+3) \(\Rightarrow5\) chia hết cho (x+3)\(\Rightarrow\left(x+3\right)\inƯ\left(5\right)=\left\{1;5;-1;-5\right\}\)
Ta có bảng sau:
Vậy x={-2;2;-8;-4}