Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{x-8}{2x-17}\)
Gọi d thuộc ƯC(x-8,2x-17)
=>x-8 chia hết cho d=>2(x-8) chia hết cho d=>2x-16 chia hết cho d
=>2x-17 chia hết cho d
=>(2x-16)-(2x-17) chia hết cho d
=>2x-16-2x+17 chia hết cho d
=>1 chia hết cho d
=> d thuộc Ư(1)=\([1;1]\)
=>Phân số trên tối giản vs mọi giá trị của x
Học tốt
a) Có: \(\left|x-2\right|\ge0\)
\(\left|x-10\right|\ge0\)
\(\Rightarrow\left|x-2\right|+\left|x-10\right|+4\ge4\)
Xét \(\orbr{\begin{cases}x-2=0\Rightarrow x=2\Rightarrow A=0+8+4=12\\x-10=0\Rightarrow x=10\Rightarrow A=8+0+4=12\end{cases}}\)
Vậy \(Min_A=12\) tại \(x=2\) hoặc \(10\)
b) Có: \(\left|x-1\right|\ge0\)
\(\left|x-2\right|\ge0\)
\(\left|x-3\right|\ge0\)
\(\Rightarrow B\ge0\)
Xét: \(\hept{\begin{cases}x-1=0\Rightarrow x=1\Rightarrow B=0+1+2=3\\x-2=0\Rightarrow x=2\Rightarrow B=1+0+1=2\\x-3=0\Rightarrow x=3\Rightarrow B=2+1+0=3\end{cases}}\)
Vậy \(Min_B=2\) tại \(x=2\)
\(x\in Z\)\(\Rightarrow x+1\ne0\Rightarrow x\ne-1\)
Gọi d=(x-4,x+1)
\(\Rightarrow\hept{\begin{cases}x-4⋮d\\x+1⋮d\end{cases}}\)
\(\Rightarrow x+1-\left(x-4\right)⋮d\)\(\Rightarrow5⋮d\)
Giả sử d=5
=> \(x=5k+4\left(k\in Z\right)\)
mà \(\frac{x-4}{x+1}\)là phân số tối giản nên d=1
=>\(x\ne5k+4\)
Để ;(x + 1).(x - 3) < 0 thì ta có 2 trường hợp
Th1 : \(\hept{\begin{cases}x+1< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>3\end{cases}\left(loai\right)}}\)
Th2 : \(\hept{\begin{cases}x+1>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-1\\x< 3\end{cases}\Rightarrow}-1< x< 3}\)
Để phân số đó tối giản ta cần chứng minh tử và mẫu là 2 số nguyên tố cùng nhau
Đặt ( x-8; 2x-17)=d (d khác 0)
x-8 chia hết cho d
2(x-8) chia hết cho d hay 2x-16 chia hết cho d
Mặt khác 2x-17 chia hết cho d=> (2x-16)(2x-17) chia hết cho d
<=> 1 chia hết cho d => d=1
=> x-8 và 2x-17 là 2 số nguyên tố cùng nhau
=> Phân số đó tối giản với mọi giá trị của x
1.a
|x|+x=0
mà |x|>=0 với mọi x
=>x nhỏ hơn hoặc bằng 0
b.x+|x|=2x
=>|x|=2x-x=x
=>|x|=x
=>x>=0
a: P(1)=2+1-1=2
P(1/4)=2*1/16+1/4-1=-5/8
b: P(1)=1^2-3*1+2=0
=>x=1 là nghiệm của P(x)
P(2)=2^2-3*2+2=0
=>x=2 là nghiệm của P(x)