Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)
\(A=1-\sqrt{1-6x+9x^2}+\left(3x-1\right)^2\)
\(A=1-\sqrt{\left(3x-1\right)^2}+\left(3x-1\right)^2\)
\(A=1-\left(3x-1\right)+\left(3x-1\right)^2\)
\(A=1-3x+1+9x^2-6x+1\)
\(A=9x^2-9x+3\)
\(A=\left(3x\right)^2-2.3x.\frac{9}{6}+\frac{81}{36}-\frac{27}{36}\)
\(A=\left(3x-\frac{9}{6}\right)^2-\frac{27}{36}\)
\(A=\left(3x-\frac{9}{6}\right)^2-\frac{3}{4}\ge0\forall x\)
Dấu = xảy ra khi:
\(3x-\frac{9}{6}=0\Leftrightarrow3x=\frac{9}{6}\Leftrightarrow x=0,5\)
Vậy Amin = -3/4 tại x = 0,5
A=1-\(\sqrt{\left(3x-1\right)^2}\)+(3x-1)^2
A=1-/3x-1/+(3x-1)^2
đặt t=/3x-1/ với t>=0
khi đó A=t^2-t+1
A=t^2-t+1/4+3/4
A=(t-1/2)^2+3/4
khi đó A>=3/4
dấu bằng xảy ra khi t=1/2 hay x=1/2
Chúc bạn học tốt!
\(A=1-|1-3x|+|3x-1|^2\)
\(=\left(|3x-1|-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(\Rightarrow minA=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)hoặc \(x=\frac{1}{6}\)