K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 2 2020

Biểu thức dưới dấu căn có gì đó ko đúng

Đoạn cuối tại sao là \(2mx-2x\) được

18 tháng 2 2020

cái đề nó vậy đó :<<<

12 tháng 3 2021

Có dấu = nha, mình nhầm

12 tháng 3 2021

ĐKXĐ

\(mx^4+mx^3+\left(m+1\right)x^2+mx+1\)

\(=\left(mx^4+mx^3+mx^2+mx\right)+\left(x^2+1\right)\)

=\(mx\left(x^3+x^2+x+1\right)+\left(x^2+1\right)\)

\(=mx\left(x+1\right)\left(x^2+1\right)+\left(x^2+1\right)\)

\(=\left(x^2+1\right).\left[mx\left(x+1\right)+1\right]>0\left(\forall x\right)\)

\(=>mx^2+mx+1>0\left(\forall x\right)\)

\(=>PT\hept{\begin{cases}mx^2+mx+1=0\left(zô\right)nghiệm\forall x\\m>0\end{cases}}\)

\(\hept{\begin{cases}\Delta< 0\\m>0\end{cases}=>\hept{\begin{cases}m^2-4m< 0\\m>0\end{cases}=>\hept{\begin{cases}m\left(m-4\right)< 0\\m>0\end{cases}=>0< m< 4}}}\)

=> m có 3 giá trị là 1,2,3 nha

5 tháng 4 2020

https://olm.vn/hoi-dap/detail/249896752542.html?pos=586036211459

giúp mk cả câu này

9 tháng 10 2021

Hàm số xác định khi \(\left\{{}\begin{matrix}x^2+2mx+2018m+2019>0\\mx^2+2mx+2020\ge0\end{matrix}\right.\)

Xét \(f\left(x\right)=x^2+2mx+2018m+2019\)

Có: \(\Delta'=m^2-2018m-2019\)

Để \(f\left(x\right)>0\) thì \(\Delta'< 0\Leftrightarrow m^2-2018m-2019< 0\Leftrightarrow-1< m< 2019\)(*)

Xét \(g\left(x\right)=mx^2+2mx+2020\)

Dễ thấy \(m=0\) thì \(g\left(x\right)=\sqrt{2020}>0\)(1)

Để \(g\left(x\right)\ge0\) thì \(\left\{{}\begin{matrix}m>0\\\Delta'\le0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m^2-2020m\le0\end{matrix}\right.\)\(\Leftrightarrow0< m\le2020\) (2)

 (1),(2)\(\Rightarrow g\left(x\right)\ge0\Leftrightarrow0\le m\le2020\) (**)

(*),(**) suy ra hàm số xác định khi \(0\le m< 2019\)

Do đó tập hợp các giá trị nguyên của m để hàm số xác định là:

\(S=\left\{m\in Z|0\le m< 2019\right\}\) và tập hợp có 2019 phần tử

NV
21 tháng 3 2022

Hàm có TXĐ là R khi và chỉ khi \(x^2-2mx-2m+3\ge0;\forall x\)

\(\Leftrightarrow\Delta'=m^2+2m-3\le0\)

\(\Leftrightarrow-3\le m\le1\)

14 tháng 3 2021

Hàm số có tập xác định là R \(\Leftrightarrow x^2-2mx-2m+3\ge0\forall x\in R\)

\(\Leftrightarrow\Delta'=m^2+\left(2m-3\right)\leq0\)

\(\Leftrightarrow\left(m-1\right)\left(m+3\right)\le0\Leftrightarrow-3\le m\le1\).

Các gt nguyên âm của m thoả mãn là : -3; -2; -1.

Vậy có 3 gt nguyên âm của m thoả mãn.