Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b1 \(\frac{x+a}{x+1}+\frac{x-2}{x}=2\)
ĐKXĐ \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)
\(\Leftrightarrow x\left(x+a\right)+\left(x-2\right)\left(x+1\right)=2x\left(x+1\right)\)
\(\Leftrightarrow x^2+ax+x^2-x-2=2x^2+2x\)
\(\Leftrightarrow ax-3x=2\)
\(\Leftrightarrow\left(a-3\right)x=2\)
để pt vô nghiệm thì a-3=0 <=>a=3 thì pt vô nghiệm
2,\(4x-k+4=kx+k\)
\(\Leftrightarrow4x-kx=2k-4\)
\(\Leftrightarrow\left(4-k\right)x=2k-4\)
để pt có nghiệm duy nhất thì 4-k khác 0 <=> k khác 4 thì pt có nghiệm duy nhất là\(\frac{2k-4}{4-k}\)
pt vô nghiệm thì 4-k=0 <=.>k=4
ĐK: \(x\ne0,x\ne\pm1\).
\(B=\frac{4x}{x+1}+\frac{x}{1-x}+\frac{2x}{x^2-1}=\frac{4x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{2x}{\left(x+1\right)\left(x-1\right)}\)
\(=\frac{4x^2-4x-x^2-x+2x}{\left(x+1\right)\left(x-1\right)}=\frac{3x^2-3x}{\left(x+1\right)\left(x-1\right)}=\frac{3x}{x+1}\)
\(AB=\frac{x-2}{x}.\frac{3x}{x+1}=\frac{3x-6}{x+1}\)
\(P=m\Leftrightarrow\frac{3x-6}{x+1}=m\Rightarrow m\left(x+1\right)=3x-6\)
\(\Leftrightarrow x\left(m-3\right)=-6-m\)
Với \(m=3\)thì \(0x=-9\)phương trình vô nghiệm.
Với \(m\ne3\): \(x=\frac{-6-m}{m-3}\)
Đối chiếu điều kiện:
\(x\ne0,x\ne\pm1\)suy ra \(\hept{\begin{cases}\frac{-6-m}{m-3}\ne0\\\frac{-6-m}{m-3}\ne1\\\frac{-6-m}{m-3}\ne-1\end{cases}}\Leftrightarrow\hept{\begin{cases}m\ne-6\\m\ne-\frac{3}{2}\end{cases}}\).
Vậy \(m\ne3,m\ne-6,m\ne\frac{-3}{2}\)thì thỏa mãn ycbt.
\(3-m=\frac{10}{x+2}\)
\(\Leftrightarrow\left(3-m\right)\left(x+2\right)=10\)
=> 3-m và x+2 thuộc Ư (10)={1;2;5;10}
TH1: \(\hept{\begin{cases}3-m=1\\x+2=10\end{cases}\Leftrightarrow\hept{\begin{cases}m=2\\x=8\end{cases}}}\)hoặc \(\hept{\begin{cases}3-m=10\\x+2=1\end{cases}\Leftrightarrow\hept{\begin{cases}m=-7\\x=1\end{cases}}}\)
TH2: \(\hept{\begin{cases}3-m=5\\x+2=2\end{cases}\Leftrightarrow\hept{\begin{cases}m=-2\\x=0\end{cases}}}\)hoặc \(\hept{\begin{cases}3-m=2\\x+2=5\end{cases}\Leftrightarrow\hept{\begin{cases}m=1\\x=-3\end{cases}}}\)(loại)
bài 3:
\(A=\frac{2x^3-6x^2+x-8}{x-3}\left(x\ne3\right)\)
\(\Leftrightarrow A=\frac{\left(2x^3-6x^2\right)+\left(x-8\right)}{x-3}=\frac{2x\left(x-3\right)+\left(x-8\right)}{x-3}=2x+\frac{x-8}{x-3}\)
Để A nguyên thì \(\frac{x-8}{x-3}\)nguyên
Có: \(\frac{x-8}{x-3}=\frac{x-3-5}{x-3}=1-\frac{5}{x-3}\)
Vì x nguyên => x-3 nguyên => x-3 \(\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Ta có bảng
x-3 | -5 | -1 | 1 | 5 |
x | -2 | 2 | 4 | 8 |