K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2017

☘ Đặt \(\dfrac{a}{1+b}=x\text{ và }\dfrac{b}{1+c}=y\text{ và }\dfrac{c}{1+a}=y\)

\(\Rightarrow x+y+z=1\)

☘ Ta có:

\(P=\left(\dfrac{1}{x}-1\right)\left(\dfrac{1}{y}-1\right)\left(\dfrac{1}{z}-1\right)\)

\(=\left(\dfrac{x+y+z}{x}-1\right)\left(\dfrac{x+y+z}{y}-1\right)\left(\dfrac{x+y+z}{z}-1\right)\)

\(=\dfrac{\left(y+z\right)\left(x+z\right)\left(x+y\right)}{xyz}\)

☘ Áp dụng bất đẳng thức AM - GM

\(\Rightarrow P\ge\dfrac{8xyz}{xyz}=8\)

☘ Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{2}\)

3 tháng 12 2017

abc=1 nên

\(P=\Sigma\dfrac{abc}{a\left(1+b\right)}=\Sigma\dfrac{bc}{1+b}=\Sigma\left(bc-\dfrac{b^2c}{1+b}\right)\)

Áp dụng Cauchy , cho ông mẫu số sau đó rút gọn rồi dụng tiếp cauchy còn ông ab +bc +ac thì như ở dưới

\(ab+bc+ac\ge3\sqrt[3]{a^2b^2c^2}=3\)

từ đấy ta có đpcm thôi

5 tháng 12 2017

use a BĐT quen thuộc:

\(\dfrac{1}{a\left(1+b\right)}+\dfrac{1}{b\left(1+c\right)}+\dfrac{1}{c\left(1+a\right)}\ge\dfrac{3}{\sqrt[3]{abc}\left(1+\sqrt[3]{abc}\right)}\)

28 tháng 4 2017

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{b+c}{4bc}+\dfrac{1}{2b}\ge3\sqrt[3]{\dfrac{b^2c\left(b+c\right)}{8a^3\left(b+c\right)b^2c}}=\dfrac{3}{2a}\\\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{c+a}{4ca}+\dfrac{1}{2c}\ge3\sqrt[3]{\dfrac{c^2a\left(c+a\right)}{8b^3\left(c+a\right)c^2a}}=\dfrac{3}{2b}\\\dfrac{a^2b}{c^3\left(a+b\right)}+\dfrac{a+b}{4ab}+\dfrac{1}{2a}\ge3\sqrt[3]{\dfrac{a^2b\left(a+b\right)}{8c^3\left(a+b\right)a^2b}}=\dfrac{3}{2c}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{1}{4c}+\dfrac{1}{4b}+\dfrac{1}{2b}\ge\dfrac{3}{2a}\\\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{1}{4a}+\dfrac{1}{4c}+\dfrac{1}{2c}\ge\dfrac{3}{2b}\\\dfrac{a^2b}{c^3\left(a+b\right)}+\dfrac{1}{4b}+\dfrac{1}{4a}+\dfrac{1}{2a}\ge\dfrac{3}{2c}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{1}{4c}+\dfrac{3}{4b}\ge\dfrac{3}{2a}\\\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{1}{4a}+\dfrac{3}{4c}\ge\dfrac{3}{2b}\\\dfrac{a^2b}{c^3\left(a+b\right)}+\dfrac{1}{4b}+\dfrac{3}{4a}\ge\dfrac{3}{2c}\end{matrix}\right.\)

\(\Rightarrow VT+\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{3}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Rightarrow VT+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{3}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Rightarrow VT\ge\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Leftrightarrow\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{a^2b}{c^3\left(a+b\right)}\ge\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) ( đpcm )

3 tháng 1 2019

3/ Áp dụng bất đẳng thức AM-GM, ta có :

\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)

\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)

\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)

Cộng 3 vế của BĐT trên ta có :

\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)

\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)

AH
Akai Haruma
Giáo viên
4 tháng 1 2019

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)

Tiếp tục áp dụng BĐT AM-GM:

\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)

Do đó:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

28 tháng 1 2018

câu 1: \(VT=\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)

21 tháng 11 2018

ta có \(\dfrac{1}{\left(a+b\right)c}\le\dfrac{1}{2\sqrt{ab}c}=\dfrac{1}{2\sqrt{c}}\)tương tự ta có

\(\Sigma\dfrac{1}{\left(a+b\right)c}\le\Sigma\dfrac{1}{2\sqrt{c}}=\dfrac{\Sigma\sqrt{ab}}{2}\le\dfrac{\Sigma a}{2}\)(đpcm)

8 tháng 12 2018

a) Áp dụng BĐT AM - GM:

\(\dfrac{a}{b}+\dfrac{b}{a}\) >= 2\(\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}\) =2

Dấu '=' xảy ra <=> a=b=1

8 tháng 12 2018

b) Cũng áp dụng BĐT AM- GM nhưng cho 3 số

28 tháng 11 2017

câu b là áp dụng bất đẳng thức cô -si ko cần chứng minh

a,Áp dụng bất đẳng thức Cô-si cho 2 số dương a,\(\dfrac{1}{b}\)ta có

a+\(\dfrac{1}{b}\)>=\(2\sqrt{\dfrac{a}{b}}\)

chứng minh tương tự ta có

b+\(\dfrac{1}{c}\)>=2\(\sqrt{\dfrac{b}{c}}\)

c+\(\dfrac{1}{a}\)>=\(2\sqrt{\dfrac{c}{a}}\)

nhân chúng vs nhau ta đc cái cần phải chứng minh

30 tháng 12 2017

Đành giải tạm bằng nick này vì sợ một vài thành phần trẻ trâu anti phá phách :poor:

Phân tích và giải

Dễ thấy: Dấu "=" khi \(a=b=c=1\)

\(\Rightarrow L=Σ\dfrac{a}{\left(a+1\right)^2}=\dfrac{3}{4}\text{ và }F=-\dfrac{4}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}=-\dfrac{1}{2}\)

Khi đó \(VT=L-F=\dfrac{3}{4}-\dfrac{1}{2}=\dfrac{1}{4}\)

Ta sẽ chia làm 2 bước cm:

B1: \(Σ\dfrac{a}{\left(a+1\right)^2}\le\dfrac{3}{4}\). Ta xét BĐT :

\(\dfrac{a}{\left(a+1\right)^2}=\dfrac{a}{a^2+2a+1}\le\dfrac{3\left(a^{2k}+a^k\right)}{8\left(a^{2k}+a^k+1\right)}\) (cần tìm \(k\) thỏa mãn)

\(\Leftrightarrow8a\left(a^{2k}+a^k+1\right)-3\left(a^{2k}+a^k\right)\left(a^2+2a+1\right)\le0\)\(\Leftrightarrow f\left(a\right)=-3a^{2k}+2a^{k+1}-3a^{k+2}+2a^{2k+1}-3a^{2k+2}-3a^k+8a\)

\(\Rightarrow f'\left(a\right)=2k\cdot-3a^{2k-1}+\left(k+1\right)2a^k-\left(k+2\right)3a^{k+1}+\left(2k+1\right)2a^{2k}-\left(2k+2\right)3a^{2k+1}-k\cdot3a^{k-1}+8a\)

\(\Rightarrow f'\left(1\right)=0\Rightarrow-12k=0\Rightarrow k=0\)

Hay BĐT phụ cần tìm là \(\dfrac{a}{a^2+2a+1}\le\dfrac{3\left(a^{2\cdot0}+a^0\right)}{8\left(a^{2\cdot0}+a^0+1\right)}=\dfrac{1}{4}\) (bài này \(k\) đẹp ra luôn \(\farac{1}{4}\) cộng vào là ok =))

\(\Leftrightarrow-\dfrac{\left(a-1\right)^2}{4\left(a+1\right)^2}\le0\) *Đúng* \(\RightarrowΣ\dfrac{a}{\left(a+1\right)^2}\leΣ\dfrac{1}{4}=\dfrac{3}{4}\)

B2: CM \(-\dfrac{4}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\le-\dfrac{1}{2}\)

Tự cm nhé Goodluck :v

30 tháng 12 2017

B2 mới khó đó sir :V