\(\ge\dfrac{3}{8}\), chứng minh rằng \(\sqrt[3]{3a-1+a\sqrt{8a-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2018

a) điều kiện xác định : \(a\ge0;a\ne1\)

ta có : \(P=\dfrac{3a+\sqrt{9a}-3}{a+\sqrt{a}-2}-\dfrac{\sqrt{a}-2}{\sqrt{a}-1}+\dfrac{1}{\sqrt{a}+2}-1\)

\(\Leftrightarrow P=\dfrac{3a+3\sqrt{a}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}-\dfrac{\sqrt{a}-2}{\sqrt{a}-1}-\dfrac{\sqrt{a}+1}{\sqrt{a}+2}\) \(\Leftrightarrow P=\dfrac{3a+3\sqrt{a}-3-\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)-\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\) \(\Leftrightarrow P=\dfrac{a+3\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}=\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}=\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\)

để \(\left|P\right|=1\Leftrightarrow\left|\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right|=1\) \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{\sqrt{a}+1}{\sqrt{a}-1}=1\\\dfrac{\sqrt{a}+1}{\sqrt{a}-1}=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-1=0\\\dfrac{\sqrt{a}+1}{\sqrt{a}-1}+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{\sqrt{a}-1}=0\\\dfrac{2\sqrt{a}}{\sqrt{a}-1}=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2=0\left(vôlí\right)\\2\sqrt{a}=0\end{matrix}\right.\Rightarrow a=0\)

vậy \(a=0\)

19 tháng 8 2018

câu b đề bị sai rồi . thế \(a=1\) vào là bt

7 tháng 8 2017

Xét \(x^3=2a+3x.\sqrt[3]{a^2-\left(\dfrac{a+1}{3}\right)^2.\dfrac{8a-1}{3}}\)

\(\Leftrightarrow x^3=2a+3x.\sqrt[3]{\dfrac{\left(1-2a\right)^3}{27}}\)

\(\Leftrightarrow x^3=2a+x.\left(1-2a\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+2a\right)=0\)

Dễ thấy \(x^2+x+2a=\left(x+\dfrac{1}{2}\right)^2+\dfrac{8a-1}{4}>0\) (vì \(a>\dfrac{1}{8}\))

Nên x=1 hay x là số nguyên.

17 tháng 10 2022

loading...Tham khảo:

 

NV
20 tháng 9 2019

Căn thức đằng sau là căn bậc 2 hay căn bậc 3 bạn?

Căn bậc 2 thì x nó vô tỉ chứ hữu tỉ làm sao được

11 tháng 7 2018

Đặt biểu thức trên là A

\(A^3=2a+3A\sqrt[3]{\left(a+\dfrac{a+1}{3}\sqrt{\dfrac{8a-1}{3}}\right)\left(a-\dfrac{a+1}{3}\sqrt{\dfrac{8a-1}{3}}\right)}\)

\(=2a+3A\sqrt[3]{a^2-\left(\dfrac{a+1}{3}\right)^2.\dfrac{8a-1}{3}}\)

\(=2a+3A\sqrt[3]{\dfrac{-8a^3+12a^2-6a+1}{27}}\)

\(=2a+3A\sqrt[3]{\left(\dfrac{1-2a}{3}\right)^3}=2a+A\left(1-2a\right)\)

\(\Leftrightarrow A^3-2a-A+2aA=0\)

\(\Leftrightarrow\left(A-1\right)\left(A^2+A+2a\right)=0\)

Dễ thấy \(A^2+A+2a>0\) nên A=1.

11 tháng 7 2018

Làm rõ cái bước 1 \(A^3\) hộ e với ạ

26 tháng 4 2020

\(x^3=2a+3x\sqrt[3]{a^2-\left(\frac{a+1}{3}\right)^2\left(\frac{8a-1}{3}\right)}\)

\(\Leftrightarrow x^3=2a+3x\cdot\frac{\sqrt[3]{\left(1-2a\right)^3}}{3}\)

\(\Leftrightarrow x^3=2a+x\left(1-2a\right)\)

\(\Leftrightarrow x^3+\left(2a-1\right)x-2a=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+2a\right)=0\)

\(\Leftrightarrow x-1=0\)(do \(x^2+x+2a\)vô nghiệm vì \(a>\frac{1}{8}\))

<=> x=1 nên là 1 số nguyên dương