K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2016

(\(a^2\)+\(b^2\)).(\(x^2\)+\(y^2\))>= (ax+by)^2

<=> \(a^2\).\(x^2\)+\(a^2\).\(y^2\)+\(b^2\).\(x^2\)+\(b^2\).\(y^2\)>=\(a^2\).\(x^2\)+2axby+\(b^2\).\(y^2\)

<=> \(a^2\).\(y^2\)- 2aybx+\(b^2\).\(x^2\)>=0

<=> (ay-bx)^2>=0 (luôn đúng)

vậy(\(a^2\)+\(b^2\)).(\(x^2\)+\(y^2\))>=(ax+by)^2

12 tháng 5 2016

 

09/05 lúc 21:40

(a2a2+b2b2).(x2x2+y2y2)>= (ax+by)^2

<=> a2a2.x2x2+a2a2.y2y2+b2b2.x2x2+b2b2.y2y2>=a2a2.x2x2+2axby+b2b2.y2y2

<=> a2a2.y2y2- 2aybx+b2b2.x

AH
Akai Haruma
Giáo viên
28 tháng 2 2020

Bài 1:

Ta có:

\(x^2+xy+y^2=\frac{3}{4}(x^2+2xy+y^2)+\frac{1}{4}(x^2-2xy+y^2)\)

\(=\frac{3}{4}(x+y)^2+\frac{1}{4}(x-y)^2\geq \frac{3}{4}(x+y)^2\)

\(\Rightarrow \sqrt{x^2+xy+y^2}\geq \frac{\sqrt{3}(x+y)}{2}\)

Hoàn toàn tương tự:

\(\sqrt{y^2+yz+z^2}\geq \frac{\sqrt{3}(y+z)}{2}; \sqrt{z^2+xz+x^2}\geq \frac{\sqrt{3}(x+z)}{2}\)

Cộng theo vế các BĐT trên:

\(\Rightarrow \sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+xz+x^2}\geq \sqrt{3}(x+y+z)\)

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z$

AH
Akai Haruma
Giáo viên
28 tháng 2 2020

Bài 2:

BĐT cần chứng minh tương đương với:

$4(a^9+b^9)-(a+b)(a^3+b^3)(a^5+b^5)\geq 0$

$\Leftrightarrow 4(a+b)(a^8-a^7b+a^6b^2-a^5b^3+a^4b^4-a^3b^5+a^2b^6-ab^7+b^8)-(a+b)(a^8+a^3b^5+a^5b^3+b^8)\geq 0$

$\Leftrightarrow 4(a^8-a^7b+a^6b^2-a^5b^3+a^4b^4-a^3b^5+a^2b^6-ab^7+b^8)-(a^8+a^3b^5+a^5b^3+b^8)\geq 0$

$\Leftrightarrow 3a^8+3b^8+4a^6b^2+4a^2b^6+4a^4b^4-(4a^7b+4ab^7+5a^5b^3+5a^3b^5)\geq 0$

$\Leftrightarrow (a-b)^2(a^2-ab+b^2)(3a^4+5a^3b+7a^2b^2+5ab^3+3b^4)\geq 0$

BĐT trên luôn đúng vì:

$(a-b)^2\geq 0, \forall a,b$

$a^2-ab+b^2=(a-\frac{b}{2})^2+\frac{3}{4}b^2\geq 0, \forall a,b$

$3a^4+5a^3b+7a^2b^2+5ab^3+3b^4=3(a^4+b^4+2a^2b^2)+a^2b^2+5ab(a^2+b^2)$

$=3(a^2+b^2)^2+5ab(a^2+b^2)+a^2b^2$

$=(a^2+b^2)(3a^2+3b^2+5ab)+a^2b^2=(a^2+b^2)[3(a+\frac{5}{6}b)^2+\frac{11}{12}b^2]+a^2b^2\geq 0$ với mọi $a,b$

Do đó ta có đpcm.

Dấu "=" xảy ra khi $a=b$ hoặc $a+b=0$

17 tháng 3 2019

Áp dụng bđt AM-GM:

\(c^2+b^2\ge2bc\)

\(c^2+a^2\ge2ac\)

Cộng theo vế: \(2c^2+a^2+b^2\ge2c\left(a+b\right)\)

\("="\Leftrightarrow a=b=c\)

NV
19 tháng 6 2019

Bạn khai triển \(xy+yz+zx\) và rút gọn là sẽ xong bài toán, kết quả hình như ra \(-1\)

Việc khai triển tính toán là rất đơn giản nhưng khá dài dòng và cần kiên nhẫn nên nhường bạn tự làm :D

Khi ấy ta có \(x^2+y^2+z^2-2+2=\left(x+y+z\right)^2+2\ge2\)

21 tháng 4 2017

lớp 8 thì còn lằng nhằng lớp 10 quá đơn giản

\(x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{1}{3}\)

21 tháng 4 2017

Lớp 8 ấy ạ chắc do bấm nhầm lớp 10

29 tháng 1 2020

\(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\\ \Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\\ \Leftrightarrow x^2+y^2+z^2-xy-yz-xz\ge0\)

đây là BĐT cơ bản luôn đúng suy ra đpcm

NV
19 tháng 6 2020

Đặt \(f\left(x\right)=x^2y^4-4xy^3+2x^2y^2+4y^2+4xy+x^2\)

\(f\left(x\right)=\left(y^4+2y^2+1\right)x^2-4\left(y^3-y\right)x+4y^2\)

\(a=y^4+2y^2+1>0;\forall y\)

\(\Delta'=4\left(y^3-y\right)^2-4y^2\left(y^4+2y^2+1\right)\)

\(=4y^6+4y^2-8y^4-4y^6-8y^4-4y^2=-16y^4\le0;\forall y\)

\(\Rightarrow f\left(x\right)\ge0\) ; \(\forall x;y\)