Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ÁP DỤNG BĐT BUNHIA TA CÓ:
\(\left(a^2+1+1+1\right)\left(1+\left(\frac{b+c}{2}\right)^2+\left(\frac{b+c}{2}\right)^2+1\right)\ge\left(1.a+\frac{b+c}{2}.1+\frac{b+c}{2}.1+1.1\right)^2\)
\(\Leftrightarrow4\left(a^2+3\right)\left(2+\frac{\left(b+c\right)^2}{2}\right)\ge4\left(a+b+c+1\right)^2\)
MẶT KHÁC ÁP DỤNG BĐT AM-GM TA CÓ:
\(\left(b^2+3\right)\left(c^2+3\right)=3b^2+3c^2+b^2c^2+1+8=2b^2+2c^2+\left(b^2+c^2\right)+\left(b^2c^2+1\right)+8\)
\(\ge2b^2+2c^2+2bc+2bc+8=2\left(b+c\right)^2+8=4\left(\frac{\left(b+c\right)^2}{2}+2\right)\)
NHƯ VẬY:
\(\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(\frac{\left(b+c\right)^2}{2}+2\right)\left(a^2+3\right)\ge4\left(a+b+c+1\right)^2\)
ĐẲNG THỨC XẢY RA KHI VÀ CHỈ KHI a=b=c=1
Ta dự đoán được đẳng thức xảy ra khi a = b = c = 1.
Theo nguyên lí Dirichlet tồn tại trong ba số\(a^2-1;b^2-1;c^2-1\) tồn tại ít nhất hai số có tích không âm. Không mất tính tổng quát,giả sử rằng \(\left(a^2-1\right)\left(b^2-1\right)\ge0\)
\(\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)
\(\Leftrightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8=4\left(a^2+b^2+2\right)\)
\(\Leftrightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+1+1\right)\)
\(\Leftrightarrow VT\ge4\left(a^2+b^2+1+1\right)\left(1+1+1+c^2\right)\)
Áp dụng BĐT Bunhiacopxki suy ra \(VT\ge4\left(a+b+c+1\right)^2\Rightarrow Q.E.D\)
Dấu "=" xảy ra khi a = b = c = 1
Đúng không ạ???
1) \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=\frac{1^2}{1}=1\)
2) \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)
=> \(P\ge2018.1+\frac{1}{3}.\frac{1}{3}=2018\frac{1}{9}\)
Dấu "=" xảy ra <=> a = b = c = 1/3
Vậy GTNN của P = \(2018\frac{1}{9}\) tại a = b = c = 1/3
Ta có : \(a^2+2b+3=a^2+1+2b+2\ge2a+2b+2=2\left(a+c+1\right)\)
\(b^2+2c+3=b^2+1+2c+2\ge2b+2c+2=2\left(b+c+1\right)\)
\(c^2+2a+3=c^2+1+2a+2\ge2c+2a+2=2\left(c+a+1\right)\)
Suy ra \(\frac{a}{a^2+2b+3}+\frac{b}{b^2+2c+3}+\frac{c}{c^2+2a+3}\le\frac{a}{2\left(a+b+1\right)}+\frac{b}{2\left(b+c+1\right)}+\frac{c}{2\left(c+a+1\right)}\)
\(=\frac{1}{2}\left(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\right)\)
Tương đương \(\frac{3}{2}-\frac{a}{a^2+2b+3}-\frac{b}{b^2+2c+3}-\frac{c}{c^2+2a+3}\ge\frac{1}{2}\left(\frac{b+1}{a+b+1}+\frac{c+1}{b+c+1}+\frac{a+1}{c+a+1}\right)\)
Đặt \(M=\frac{b+1}{a+b+1}+\frac{c+1}{b+c+1}+\frac{a+1}{c+a+1}\)
Áp dụng bất đẳng thức Cauchy-Schwarz ta được : \(M=\frac{\left(b+1\right)^2}{\left(b+1\right)\left(a+b+1\right)}+\frac{\left(c+1\right)^2}{\left(c+1\right)\left(b+c+1\right)}+\frac{\left(a+1\right)^2}{\left(a+1\right)\left(c+a+1\right)}\)
\(\ge\frac{\left(a+b+c+3\right)^2}{\left(a+1\right)\left(a+b+1\right)+\left(c+1\right)\left(b+c+1\right)+\left(a+1\right)\left(c+a+1\right)}\)
Do \(\left(a+1\right)\left(a+b+1\right)+\left(c+1\right)\left(b+c+1\right)+\left(a+1\right)\left(c+a+1\right)=a^2+b^2+c^2+ab+bc+ca+3\left(a+b+c\right)+3\)\(=\frac{1}{2}\left(a^2+b^2+c^2\right)+ab+bc+ca+3\left(a+b+c\right)+\frac{9}{2}=\frac{1}{2}\left(a+b+c+3\right)^2\)
Từ đó \(M\ge\frac{\left(a+b+c+3\right)^2}{\frac{1}{2}\left(a+b+c+3\right)^2}=2\Rightarrow\frac{3}{2}-\frac{a}{a^2+2b+3}-\frac{b}{b^2+2c+3}-\frac{c}{c^2+2a+3}\ge\frac{1}{2}.2=1\)
\(< =>\frac{a}{a^2+2b+3}+\frac{b}{b^2+2c+3}+\frac{c}{c^2+2a+3}\le\frac{1}{2}\left(đpcm\right)\)
Bài toán hoàn tất . Đẳng thức xảy ra khi và chỉ khi \(a=b=c=1\)
sao dài thế @@ chộp bài nào làm bài nấy ha
Câu 1:
Giả sử \(\sqrt{7}\) là số hữu tỉ thì \(\sqrt{7}=\frac{a}{b}\) với \(\frac{a}{b}\) là phân số tối giản, a;b thuộc Z, b khác 0
\(\frac{a}{b}=\sqrt{7}\Rightarrow\left(\frac{a}{b}\right)^2=7\Rightarrow\frac{a^2}{b^2}=7\Rightarrow a^2=7b^2\)=> a2 chia hết cho 7 (1)
=> a chia hết cho 7 => a=7k với k thuộc Z
Thay a=7k vào a2=7b2 ta được 49k2=7b2 => 7k2=b2 => b2 chia hết cho 7 => b chia hết cho 7 (2)
Từ (1) và (2) => phân số a/b chưa tối giản trái với giả thiết ban đầu
=>\(\sqrt{7}\) là số vô tỉ (đpcm)