K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2017

đặt VT =A đi .thì sử dụng BĐT bunhiacopxki ta có: 
A[a(b+c)+b(c+d)+c(d+a)+d(a+b)] 
>=(a+b+c+d)^2 
giờ ta chỉ cần chứng minh: 
(a+b+c+d)^2>=2a(b+c)+b(c+d)+c(d+a)+d(a... 
điều này <=> với:a^2+b^2+c^2+d^2>=2ac+2bd. 
diều này là hiển nhiên theo BĐT cô-si=>đpcm.MinA=2.

2 tháng 8 2017

a)Áp dụng BĐT B.C.S:(1^2+1^2)(x^2+y^2)>=(1.x+1.y)^2>>>2(x^2+y^2)>=(x+y)^2.Sau đó chia 2 ở cả 2 vế.

Áp dụng BĐT Cô-si:(x+y)>=2√xy >>>>(x+y)^2/2>=2xy(đpcm)

b)a^2+1/(a^2+1)=a^2+1+1/(a^2+1)-1>=2-1=1(BĐT Cô-si)

c)a^2+b^2>=2ab suy ra (a^2+b^2)c>=2abc,tương tự rồi cộng lại là >=6abc nhé

d)ab/a+b<=(a+b)^2/4(a+b)(cm ở câu a)=(a+b)/4

Tương tự cộng lại được ab/a+b+bc/b+c+ca/c+a<=(a+b+b+c+c+a)/4=(a+b+c)/2(đpcm)

3 tháng 2 2017

Theo BĐT AM-GM ta có: \(\sqrt{\frac{a}{b+c}}=\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{2a}{a+b+c}\)

Tương tự ta cũng có BĐT tương tự, cộng theo vế ta có:

\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge2\left(I\right)\)

Mà \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\left(1\right)\) .Vì \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\Leftrightarrow\left(a+c\right)\left(a+b\right)>a\left(a+b+c\right)\)

\(\Leftrightarrow a\left(a+b\right)+c\left(a+b\right)>a\left(a+b\right)+ac\)

\(\Leftrightarrow c\left(a+b\right)>ac\Leftrightarrow a+b>a\) (luôn đúng)

Tương tự ta có: \(\frac{a+b}{a+b+c}>\frac{b}{b+c}\left(2\right);\frac{c+a}{a+b+c}>\frac{c}{a+c}\left(3\right)\)

Ta có: \(\left(1\right)+\left(2\right)+\left(3\right)\Rightarrow\frac{a}{a+b}+\frac{b}{b+a}+\frac{c}{a+c}< 2\left(II\right)\)

Từ (I) và (II) ta thu được điều phải chứng minh

4 tháng 11 2017

giỏi thì làm đê

10 tháng 10 2018

mk k giỏi

ko lm đc

Ta có

\(\sqrt{a+b}+\sqrt{a-b}< \sqrt{a+c}+\sqrt{a-c}\)

\(\Rightarrow\frac{\sqrt{a+b}+\sqrt{a-b}}{2}< \frac{\sqrt{a+c}+\sqrt{a-c}}{2}\)

\(\Rightarrowđpcm\)(liên hợp)

3 tháng 8 2017

bạn xem lại cái đề được không

với a=1/2; b=7/10; c=13/10 thì bất đẳng thức trên không đúng

3 tháng 8 2017

Sửa đề: a+b+c>=3

Hay 6<= 2(a+b+c)

Theo BĐT Cauchy-Schwarz dạng Engel

\(\frac{a^2}{a+2}+\frac{b^2}{b+2}+\frac{c^2}{c+2}\ge\frac{\left(a+b+c\right)^2}{a+b+c+6}\ge\frac{\left(a+b+c\right)^2}{3\left(a+b+c\right)}=\frac{a+b+c}{3}\ge\frac{3}{3}=1\)

p/s: ko chắc lắm bạn ktra giúp mình nha

2 tháng 6 2021
Chịu thôi hoho
2 tháng 6 2021

Với \(a>b>c:\hept{\begin{cases}\frac{2a^2}{a-b}\ge\frac{2a^2-2b^2}{a-b}=\frac{2\left(a-b\right)\left(a+b\right)}{a-b}=2a-2b\\\frac{b^2}{b-c}\ge\frac{b^2-c^2}{b-c}=\frac{\left(b-c\right)\left(b+c\right)}{b-c}=b+c\end{cases}}\)

\(\Rightarrow\frac{2a^2}{a-b}+\frac{b^2}{b-c}\ge2a+3b+c\)

Dấu đẳng thức xảy ra \(\Leftrightarrow b=c=0\)(Vô lí với \(b>c\))

Vậy \(\frac{2a^2}{a-b}+\frac{b^2}{b-c}>2a+3b+c\)

5 tháng 10 2015

2a²/(a-b) + b²/(b-c) = (2a²-2b²)/(a-b) + (b²-c²)/(b-c) + 2b²/(a-b) + c²/(b-c)

                           = 2(a+b) + (b+c) + 2b²/(a-b) + c²/(b-c)

                           >2a +3b +c (vì a,b,c > 0)