K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2020

1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1

Thay vào ab=cd được ka1b=bc1d nên

a1b=c1d  (1)

Ta có: a1\(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m =  c1d nên a1m=d

Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)

\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)

Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)

14 tháng 10 2020

2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.

Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.

Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)

b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)

Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......

16 tháng 2 2015

bài này thử là nhanh nhất (hi hi , mình đùa vui thôi chứ minh ko bít làm)

16 tháng 2 2015

Câu a) a chia 13 dư 2 thì a2 chia 13 dư 4

b chia 13 dư 3 thì b2 chia 13 dư 9. Vậy a2 + b2 chia hết cho 13

Câu b) tương tự nhé bạn.

27 tháng 7 2016

Bài 4 :

Thay x=y+5 , ta có :

a ) ( y+5)*(y5+2)+y*(y-2)-2y*(y+5)+65

=(y+5)*(y+7)+y^2-2y-2y^2-10y+65

=y^2+7y+5y+35-y^2-2y-2y^2-10y+65

= 100

Bài 5 :

A = 15x-23y

B = 2x-3y

Ta có : A-B

= ( 15x -23y)-(2x-3y)

=15x-23y-2x-3y

=13x-26y

=13x*(x-2y) chia hết cho 13 

=> Nếu A chia hết cho 13 thì B chia hết cho 13 và ngược lại 

7 tháng 4 2018

Câu hỏi tương tự có nhé

7 tháng 4 2018

Ta có: 

\(4a^2+3ab-11b^2=4a^2+4ab-11ab-11b^2+10ab\)

\(=4a\left(a+b\right)-11b\left(a+b\right)+10ab\)

\(=\left(4a-11b\right)\left(a+b\right)+10⋮5\)

\(10ab⋮5\Rightarrow\left(4a-11b\right)\left(a+b\right)⋮5\)

\(a+b⋮5\Rightarrow a^4-b^4=\left(a+b\right)\left(a^2+b^2\right)\left(a-b\right)⋮a-b⋮5\left(1\right)\)

\(4a-11b⋮5\Rightarrow4a-11b=5a-10b-a+b\)

Vì \(5a-10b⋮5\Rightarrow a-b⋮5\)

\(a^4-b^4=\left(a+b\right)\left(a^2+b^2\right)\left(a-b\right)⋮a-b⋮5\left(2\right)\)

Từ ( 1 ) và ( 2 ) suy ra \(a^4-b^4⋮5\left(đpcm\right)\)

5 tháng 4 2017

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15

13 tháng 8 2019

BS là gì vậy bạn???

6 tháng 9 2017

Bài làm:

a, Ta có: 98⋮7⇒98a⋮798⋮7⇒98a⋮7. Mà 100a+b⋮7⇒(100a+b)−98a⋮7⇒100a+b−98a⋮7100a+b⋮7⇒(100a+b)−98a⋮7⇒100a+b−98a⋮7

⇒2a+b⋮7⇒4.(2a+b)⋮7⇒8a+4b⋮7⇒2a+b⋮7⇒4.(2a+b)⋮7⇒8a+4b⋮7

Mặt khác 7a⋮7⇒8a+4b−7a⋮7⇒a+4b⋮77a⋮7⇒8a+4b−7a⋮7⇒a+4b⋮7 (đpcm)

Vậy...

b, Ta có: 3a+4b⋮11⇒4.(3a+4b)⋮11⇒12a+16b⋮113a+4b⋮11⇒4.(3a+4b)⋮11⇒12a+16b⋮11

Mà 11(a+b)⋮11⇒11a+11b⋮1111(a+b)⋮11⇒11a+11b⋮11

⇒(12a+16b)−(11a+11b)⋮11⇒12a+16b−11a−11b⋮11⇒(12a+16b)−(11a+11b)⋮11⇒12a+16b−11a−11b⋮11

⇒a+5b⋮11⇒a+5b⋮11 (đpcm)

Vậy...

13 tháng 9 2016

9x2 + 5y chia hết cho 17

mà ƯCLN(4 ; 17) = 1

nên 4(9x2 + 5y) chia hết cho 17

hay 36x2 + 20y chia hết cho 17

mà 34xchia hết cho 17 ; 17y chia hết cho 17

nên 36x2 + 20y - 34x2 - 17y = 2x2 + 3y chia hết cho 17

***

3x2 - 7y chia hết cho 23

mà ƯCLN(17 ; 23) = 1

nên 17(3x2 - 7y) chia hết cho 23

hay 51x2 - 119y chia hết cho 23

mà 46xchia hết cho 23 ; 115y chia hết cho 23

nên 51x2 - 119y - 46x2 + 115y = 5x2 - 4y chia hết cho 23

Chúc bạn học tốt ^^

13 tháng 9 2016

ari bn nhiều ~