K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 3 2017

Lời giải:

Áp dụng bất đẳng thức AM-GM:

\(a^2+2=(a^2+1)+1\geq 2\sqrt{a^2+1}\)

Do đó mà \(\frac{a^2+2}{\sqrt{a^2+1}}\geq \frac{2\sqrt{a^2+1}}{\sqrt{a^2+1}}=2\) (đpcm)

Dấu bằng xảy ra khi \(a^2+1=1\Leftrightarrow a=0\)

11 tháng 5 2017

Câu a hạ bậc rồi áp dụng cosa + cosb

Câu b thì mối liên hệ giữa tan với cot là ra

6 tháng 9 2017

Từ 1 đến 79 có số lượng số là:

\(\left(79-1\right):3+1=27\)

Ta có:

\(X=1+4+7+...+79\)

\(X=\dfrac{\left(79+1\right).27}{2}=\dfrac{80.27}{2}=1080\)

Chúc bạn học tốt!!!

\(=-6\cdot\dfrac{1}{27}\cdot\left[\dfrac{-4}{9}\cdot\left(\dfrac{-1}{2}-\dfrac{4}{3}\right)\right]\)

\(=\dfrac{-2}{9}\cdot\left[-\dfrac{4}{9}\cdot\dfrac{-11}{6}\right]\)

\(=\dfrac{-2}{9}\cdot\dfrac{44}{54}=\dfrac{-88}{432}=\dfrac{-11}{54}\)

23 tháng 9 2017

a) ta có :

\(\Delta'=1^2-\left(-1-m\right)\left(m^2-1\right)=1-\left(-m^2+1-m^3+m\right)=1+m^2-1+m^3-m=m^3+m^2-m=m\left(m^2+m-1\right)\)để phương trình có nghiệm thì \(\Delta\ge0\)

hay \(m\left(m^2+m-1\right)\ge0\)

=> \(\left\{{}\begin{matrix}m\ge0\\m^2+m-1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\\left(m+\dfrac{1}{2}\right)^2-\dfrac{5}{4}\ge0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}m\ge0\\\left(m+\dfrac{1}{2}\right)^2\ge\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}m\ge0\\\left[{}\begin{matrix}m+\dfrac{1}{2}\ge\\m+\dfrac{1}{2}\le-\dfrac{\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\dfrac{\sqrt{5}}{2}}\)

1 tháng 9 2017

a, \(\dfrac{b}{5}+\dfrac{1}{10}=\dfrac{1}{a}\)

\(\Leftrightarrow\dfrac{2b}{10}+\dfrac{1}{10}=\dfrac{1}{a}\)

\(\Leftrightarrow\dfrac{2b+1}{10}=\dfrac{1}{a}\)

\(\Leftrightarrow\left(2b+1\right)a=10\)

\(a,b\in Z\Leftrightarrow2b+1\in Z;2b+1\inƯ\left(10\right)\)

Xét ước là ra..

b, \(\dfrac{a}{4}-\dfrac{1}{2}=\dfrac{3}{b}\)

\(\Leftrightarrow\dfrac{a}{4}-\dfrac{2}{4}=\dfrac{3}{b}\)

\(\Leftrightarrow\dfrac{a-2}{4}=\dfrac{3}{b}\)

\(\Leftrightarrow\left(a-2\right)b=12\)

\(a,b\in Z\Leftrightarrow a-2\in Z;a-2;b\inƯ\left(12\right)\)

Xét ước là ra

\(a,\dfrac{b}{5}+\dfrac{1}{10}=\dfrac{1}{a}\)

\(\dfrac{\left(2b+1\right)a}{10a}=\dfrac{10}{10a}\)

\(\text{2ab+a=10}\)

\(\text{a(2b+1)=10}\)

\(\text{a(2b+1)=10}\)nên a và 2b+1 là ước nguyên của 10

=>a;2b+1 thuộc{-10;-5;-2;-1;1;2;5;10}

Lập bảng giá trị

a -10 -5 -2 -1 1 2 5 10
2b+1 -1 -2 -5 -10 10 5 2 1
b -2 \(-\dfrac{3}{2}\) -3 \(-\dfrac{11}{2}\) \(\dfrac{9}{2}\) 2 \(\dfrac{1}{2}\) 0
Đối chiếu Chọn Loại Chọn Loại Loại Chọn Loại Chọn

Vậy

1 tháng 4 2017

lớp 6

27 tháng 7 2017

Vì A\(\cap\)B nên cả A và B đều chứa A,B={0;1;2;3;4}

Vì A\B nên {-3;-2} chỉ \(\in\)A mà \(\notin\) B

Vì B\A nên {6;9;10} chỉ \(\in\) B mà \(\notin\) A

Vậy: A={-3;-2;0;1;2;3;4}

B={0;1;2;3;4;6;9;10}

3 tháng 6 2017

C1:

\(A=\dfrac{10^{50}+2}{10^{50}-1}=\dfrac{10^{50}-1}{10^{50}-1}+\dfrac{3}{10^{50}-1}=1+\dfrac{3}{10^{50}-1}\\ B=\dfrac{10^{50}}{10^{50}-3}=\dfrac{10^{50}-3}{10^{50}-3}+\dfrac{3}{10^{50}-3}=1+\dfrac{3}{10^{50}-3}\\ \text{Vì }10^{50}-3< 10^{50}-1\Rightarrow\dfrac{3}{10^{50}-3}>\dfrac{3}{10^{50}-1}\Rightarrow1+\dfrac{3}{10^{50}-3}>1+\dfrac{3}{10^{50}-1}\Leftrightarrow B>A\)

Vậy \(B>A\)

C2: Áp dụng \(\dfrac{a}{b}>1\Rightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\left(n>0\right)\)

Dễ thấy

\(B=\dfrac{10^{50}}{10^{50}-3}>1\\ \Rightarrow B=\dfrac{10^{50}}{10^{50}-3}>\dfrac{10^{50}+2}{10^{50}-3+2}=\dfrac{10^{50}+2}{10^{50}-1}=A\)

Vậy \(B>A\)