K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
22 tháng 4 2016
Mình học lớp 7 nên chỉ làm được phần b, thôi
b, * Nếu x=1 thì:
1+1=2
* Nếu x=2 thì:
2+ 1/2 >2
* Nếu x>2
=> x + 1/x > 2 ( vì 1/x là số dương )
Vậy x + 1/x >=2 (x>0)
22 tháng 4 2016
Phần A mình tìm được ở trang này nè http://olm.vn/hoi-dap/question/162099.html
DT
0
TD
0
PH
0
NN
1
8 tháng 7 2021
\(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}=\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}\)
\(=\frac{a^2+b^2+c^2}{abc}\)
\(\frac{a^2+b^2+c^2}{abc}\ge\frac{2ab+2bc+2ca}{abc}\)(BĐT tương đương)
\(\frac{2abc\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}{abc}\)
\(=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)< =>ĐPCM\)
đề bỏ số 2 nha bạn
Áp dụng BĐT Cauchy - Schwarz, ta có :
\(\frac{a}{bc}+\frac{b}{ac}\ge2\sqrt{\frac{a}{bc}.\frac{b}{ac}}=\frac{2}{c}\)
Tương tự , \(\frac{b}{ac}+\frac{c}{ab}\ge\frac{2}{a}\); \(\frac{a}{bc}+\frac{c}{ab}\ge\frac{2}{b}\)
Cộng từng vế BĐT, ta được :
\(2.\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\ge2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c
Thank bạn