K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 6 2020

Đường tròn tâm \(I\left(2;-2\right)\) bán kính \(R=2\)

Tiếp tuyến d vuông góc trục hoành nên pt có dạng: \(x+a=0\)

d tiếp xúc (C) \(\Leftrightarrow d\left(I;d\right)=R\)

\(\Leftrightarrow\frac{\left|2+a\right|}{1}=2\Rightarrow\left[{}\begin{matrix}a=0\\a=-4\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\)

8 tháng 5 2016

(C) có tâm I(-4;-2), bán kính R=5. Gọi phương trình đường thẳng tiếp tuyến đi qua M(2;1) là a(x-2)+b(y-1)=0

Khoảng cách từ tâm I tới đường thẳng này là $d=\dfrac{|-6a-3b|}{\sqrt{a^2+b^2}}=R=5$

$\(\Rightarrow\left(6a+3b\right)^2=25\left(a^2+b^2\right)\Leftrightarrow11a^2+36ab-16b^2=0\)$