K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2017

Đáp án C

Gọi số tự nhiên cần lập có dạng a b c ¯ a , b , c ∈ 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; a ≠ 0  

Bài toán không yêu cầu số tự nhiên có 3 chữ số khác nhau.

Chọn c = {0;2;4;6} có 4 cách chọn, chọn a ≠ 0  có 6 cách chọn và chọn b có 7 cách chọn.

Theo quy tắc nhân có: 4.6.7 = 168 số.

27 tháng 1 2019

Đáp án B

Phương pháp: Gọi số tự nhiên có ba chữ số cần tìm là a b c ( a ≠ 0 ) , tìm số cách chọn cho các chữ số a, b,c sau đó áp dụng quy tắc nhân.

Cách giải: Gọi số tự nhiên có ba chữ số cần tìm là  a b c ( a ≠ 0 )

Có 4 cách chọn c.

Có 6 cách chọn a.

Có 7 cách chọn b.

Vậy có 4.6.7 = 168 số.

Chú ý và sai lầm: Các chữ số a, b, c không yêu cầu khác nhau

5 tháng 1 2018

Đáp án A

Goi A là số tự nhiên có hai chữ số lẻ khác nhau lấy từ các số 1, 2, 3, 4, 5, 6 số cách chọn được A là A 3 2 = 6.  Số chẵn có 5 chữ số mà hai số lẻ đứng kề nhau phải chứa A và ba trong 4 chữ số 0;2;4;6. Gọi a b c d ¯ ; a , b , c , d ∈ A , 0 , 2 , 4 , 6 là số thỏa mãn yêu cầu bài toán.

*TH1: Nếu d = 0  số cách lập là:  1. A 4 3 = 24

*TH2: Nếu d ≠ 0  thì d có 3 cách chọn, a có 3 cách chọn, b có 3 cách chọn, c có 2 cách chọn nên số cách lập là:  3.3.3.2 = 54

Số cách lập: 6 24 + 54 = 468.   

18 tháng 4 2017

8 tháng 4 2018

Vậy số cách chọn theo yêu cầu đề bài là: 360

25 tháng 3 2018

Đáp án là A.

Gọi số cần lập có dạng:  a 1 a 2 a 3 a 4 a 5 ¯

Chọn 2 số lẻ thuộc nhóm 1 ; 3 ; 5 ; 7 ⇒ C 4 2  

Chọn 3 số chẳn trong nhóm 0 ; 2 ; 4 ; 6 ⇒ C 4 3  

Hoán vị 2 nhóm trên có 5! cách

* Các số có số a 1 = 0  

Chọn 2 số lẻ thuộc nhóm 1 ; 3 ; 5 ; 7 ⇒ C 4 2  

Chọn 2 số chẳn trong nhóm 0 ; 2 ; 4 ; 6 ⇒ C 3 2  

Hoán vị 2 nhóm trên có 4! cách

Vậy các số cần tìm: C 4 2 . C 4 3 .5 ! − C 4 2 . C 3 2 .4 ! = 2448  số

28 tháng 7 2019

Đáp án D

Gọi a b c d e f ¯  là số cần lập. Suy ra f ∈ 2 ; 4 ; 6 , c ∈ 3 ; 4 ; 5 ; 6 . Ta có

TH1: f = 2 ⇒  có 1.4.4.3.2.1 = 96 cách chọn

TH2: f = 4 ⇒ có  1.3.4.3.2.1 = 72 cách chọn

TH3: f = 6 ⇒ có 1.3.4.3.2.1 = 72 cách chọn.

Suy ra 96 + 72 + 72 = 240  số thỏa mãn đề bài

10 tháng 10 2018

Đáp án D

Ta xét hai trường hợp chữ số hàng đơn vị bằng 2 và khác 2.

+) Chữ số hàng đơn vị là 2

Số hàng nghìn lớn hơn 2 nên có 4 cách chọn (3, 4, 5, 6). Còn 4 chữ số sắp xếp vào 4 vị trí còn lại có A 4 4 = 4 ! = 24  cách sắp xếp.

Như vật tổng số chữ số thỏa mãn bài toán trong trường hợp này là: N 1 = 4.24 = 96  (số)

+) Chữ số hàng đơn vị khác 2 nên có thể bằng 4 hoặc 6

Số hàng nghìn lớn hơn 2 nên có 3 cách chọn (3, 5 và 6 hoặc 4). Còn 4 chữ số sắp xếp vào 4 vị trí còn lại có A 4 4 = 4 ! = 24  cách sắp xếp.

Như vật tổng số chữ số thỏa mãn bài toán trong trường hợp này là N 2 = 2.3.24 = 144  (số)

=> Tổng số các chữ số thỏa mãn bài toán:

N = N 1 + N 2 = 96 + 144 = 240  (số).