K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2016

Mình lp 7 -_-

Mình giải thích rõ hơn nhé : 

Đặt (2x + 3y) là a, đa thức được viết thành : 

\(a^2+2a+1=a^2+2a\cdot1+1^2=\left(a+1\right)^2\)

Sau đó thế 2x + 3y = a vào là ra.

3 tháng 6 2016

\(\left(2x+3y\right)^2+2\cdot\left(2x+3y\right)+1\)

\(=\left(2x+3y+1\right)^2\)

\(S=\dfrac{\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc}{2a^2+2b^2+2c^2-2ab-2bc-2ac}\)

\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)}{2a^2+2b^2+2c^2-2ab-2bc-2ac}\)

\(=\dfrac{3\cdot\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)\cdot\dfrac{1}{2}}{2a^2+2b^2+2c^2-2ab-2bc-2ac}=\dfrac{3}{2}\)

a) 9x2 – 6x + 1 = (3x)2 – 2 . 3x . 1 + 12 = (3x – 1)2

Hoặc 9x2 – 6x + 1 = 1 – 6x + 9x2 = (1 – 3x)2

b) (2x + 3y) = (2x + 3y)2 + 2 . (2x + 3y) . 1 + 12

= [(2x + 3y) + 1]2

= (2x + 3y + 1)2

Đề bài tương tự. Chẳng hạn:

1 + 2(x + 2y) + (x + 2y)2

4x2 – 12x + 9…

\(M=\dfrac{\left(a-b\right)^3-c^3+3ab\left(a-b\right)-3abc}{\left(a+b\right)^2+\left(b-c\right)^2+\left(c+a\right)^2}\)

\(=\dfrac{\left(a-b-c\right)\left(a^2-2ab+b^2+ac-bc+c^2+3ab\right)}{2a^2+2b^2+2c^2+2ab-2bc+2ac}\)

\(=\dfrac{\left(a-b-c\right)\cdot\left(a^2+b^2+c^2-ab-bc+ac\right)}{2\cdot\left(a^2+b^2+c^2+ab-bc+ac\right)}=\dfrac{2}{2}=1\)

3 tháng 6 2016

a) \(9x^2-6x+1=\left(3x\right)^2-2.3x.1+1^2=\left(3x-1\right)^2\)

b) \(\left(2x+3y\right)^2+2\left(2x+3y\right)+1=\left[\left(2x+3y\right)+1\right]^2=\left(2x+3y+1\right)^2\)

4 tháng 6 2016

a) =(3x)2-2.3x+1  =(3x-1)2

b) tương tự ta có gái trị biểu thức =(2x+3y+1)2

5 tháng 10 2016

a) \(x^2+2x+1=\left(x+1\right)^2\)

b) \(9x^2+y^2+6xy=\left(3x+y\right)^2\)

c) \(25a^2+4b^2-20ab=\left(5a-2b\right)^2\)

d) \(x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2\)

5 tháng 10 2016

bạn có thể giải thích bằng lời đẻ ôi hiểu rõ hơn có được hay ko

 

2 tháng 8 2016

câu a mình nghĩ là z-x chứ bạn

2 tháng 8 2016

câu b nhé

Toán lớp 8

20 tháng 12 2016

Tuyển " sư phụ "............................~~ K thành công !!! leuleu

14 tháng 8 2016

A B C D M N P Q K

Bạn cần thêm điều kiện AB = AD .

Gọi K là trung điểm của AD. Dễ dàng chứng minh được MNPQ là hình vuông 

Suy ra : \(S_{MNPQ}=\frac{NQ^2}{2}\)

Mặt khác, ta luôn có : \(KQ+QN\ge KN\) \(\Rightarrow QN\ge\left|KN-KQ\right|=\frac{1}{2}\left|c-a\right|\)

\(\Rightarrow QN^2\ge\frac{\left(c-a\right)^2}{4}\Rightarrow S_{MNPQ}=\frac{QN^2}{2}\ge\frac{\left(c-a\right)^2}{8}\)

Dấu "=" xảy ra khi M , Q, N thẳng hàng => AB // CD