Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 + 2x + 1 = x2 + 2.x.1+ 12 = ( x + 1)2
b) 9x2 + y2 + 6xy = (3x)2 + 2.3.x.y + y2 = (3x + y)2
c) 25a2 + 4b2 – 20ab = (5a)2 – 2.5.a.2b. + (2b)2 = (5a – 2b)2
Hoặc 25a2 + 4b2 – 20ab = (2b)2 – 2.2b.5a. + (5a)2 = (2b – 5a)2
d) x2 – x + \(\dfrac{1}{4}\) = x2 – 2.x. \(\dfrac{1}{2}\) + ( \(\dfrac{1}{2}\))22 = ( x - \(\dfrac{1}{2}\) )2
Hoặc x2 – x + \(\dfrac{1}{4}\) = \(\dfrac{1}{4}\) - x + x2 = (\(\dfrac{1}{2}\))2 – 2. \(\dfrac{1}{2}\).x + x2 = (\(\dfrac{1}{2}\) - x)2
a) x2 + 2x + 1 = x2+ 2 . x . 1 + 12
= (x + 1)2
b) 9x2 + y2+ 6xy = (3x)2 + 2 . 3 . x . y + y2 = (3x + y)2
c) 25a2 + 4b2– 20ab = (5a)2 – 2 . 5a . 2b + (2b)2 = (5a – 2b)2
Hoặc 25a2 + 4b2 – 20ab = (2b)2 – 2 . 2b . 5a + (5a)2 = (2b – 5a)2
d) x2 – x + 1414 = x2 – 2 . x . 1212 + (12)2(12)2= (x−12)2(x−12)2
Hoặc x2 – x + 1414 = 1414 - x + x2 = (12)2(12)2 - 2 . 1212 . x + x2 = (12−x)2
\(25a^2+4b^2-20ab\)
\(=\)\(25a^2-20ab+4b^2\)
\(=\)\(\left(5a\right)^2-2.5a.2b+\left(2b\right)^2\)
\(=\)\(\left(5a-2b\right)^2\)
Chúc bạn học tốt ~
*\(x^2-x+\frac{1}{4}=x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2=\left(x-\frac{1}{2}\right)^2\)
*\(25a^2+4b^2-20ab=\left(5a\right)^2-2.5a.2b+\left(2b\right)^2=\left(5a-2b\right)^2\)
*\(9x^2+y^2+6xy=\left(3x\right)^2+2.3x.y+y^2=\left(3x+y\right)^2\)
a) =(3x+y)2
câu b) sao kì quá mik k hiểu bạn xem lại đề đi có viết thiếu dấu k
a)\(x^2+2x+1=x^2+2x1+1^2=\left(x+1\right)^2\)
b)\(9x^2+y^2+6xy=3^2x^2+y^2+2.3x.y=\left(3x\right)^2+2.3x.y+y^2=\left(3x+y\right)^2\)
c)\(25a^2+4b^2-20ab=5^2a^2+2^2b^2-2.5a.2b=\left(5a\right)^2-2.5a.2b+\left(2b\right)^2=\left(5a-2b\right)^2\)
d)\(x^2-x+\frac{1}{4}=x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2=\left(x-\frac{1}{2}\right)^2\)
a) \(x^2+2x+1=\left(x+1\right)^2\)
b) \(9x^2+y^2+6xy=\left(3x+y\right)^2\)
c) \(25a^2+4b^2-20ab=\left(5a-2b\right)^2\)
Câu d thì biểu thức là \(\frac{x^2-1}{2x+\frac{1}{10}}\) hay là \(\frac{x^2-1}{\frac{2x+1}{10}}\) z bạn???
\(25a^2+4b^2-20ab=\left(5a\right)^2-2.5a.2b+\left(2b\right)^2=\left(5a-2b\right)^2.\)