Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Đặt \(x^2-6x-2=a\)
Theo đề, ta có: \(a+\dfrac{14}{a+9}=0\)
=>(a+2)(a+7)=0
\(\Leftrightarrow\left(x^2-6x\right)\left(x^2-6x+5\right)=0\)
=>x(x-6)(x-1)(x-5)=0
hay \(x\in\left\{0;1;6;5\right\}\)
c: \(\Leftrightarrow\dfrac{-8x^2}{3\left(2x-1\right)\left(2x+1\right)}=\dfrac{2x}{3\left(2x-1\right)}-\dfrac{8x+1}{4\left(2x+1\right)}\)
\(\Leftrightarrow-32x^2=8x\left(2x+1\right)-3\left(8x+1\right)\left(2x-1\right)\)
\(\Leftrightarrow-32x^2=16x^2+8x-3\left(16x^2-8x+2x-1\right)\)
\(\Leftrightarrow-48x^2=8x-48x^2+18x+3\)
=>26x=-3
hay x=-3/26
Đặt \(A=x^{20}+x^{10}+1\)
\(x^{50}+x^{10}+1\)
\(=x^{50}-x^{20}+A\)
\(=x^{20}\left(x^{30}-1\right)+A\)
\(=x^{20}\left(x^{10}-1\right)A+A\)
\(=\left(x^{30}-x^{20}+1\right)A\)
mà \(\left(x^{30}-x^{20}+1\right)A⋮A\)
\(\Rightarrow\left(x^{50}+x^{10}+1\right)⋮\left(x^{20}+x^{10}+1\right)\)
a,
\(\dfrac{18\left(x-y\right)^{10}}{2\left(x-y\right)^5}=9\left(x-y\right)^5\)
b, \(\dfrac{10\left(x-2\right)^{12}}{\left(2-x\right)^{10}}=\dfrac{10\left(x-2\right)^{12}}{\left(x-2\right)^{10}}=10\left(x-2\right)^2\)
c, \(\dfrac{-18\left(x-3\right)^5}{2\left(3-x\right)^3}=\dfrac{-18\left(x-3\right)^5}{-2\left(x-3\right)^3}=9\left(x-3\right)^2\)
d,\(\dfrac{x^2-6x+9}{x-3}=\dfrac{\left(x-3\right)^2}{x-3}=x-3\)
e, \(\dfrac{x^2-x-2}{x+1}=\dfrac{x^2-2x+x-2}{x+1}=\dfrac{\left(x-2\right)\left(x+1\right)}{x+1}=x-2\)
Ta có: x = 9 => x - 9 = 0
\(Q\left(x\right)=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)
\(=x^{14}-9x^{13}-x^{13}+9x^{12}+x^{12}-9x^{11}+...-x^3+9x^2+x^2-9x-x+9+1\)
\(=x^{13}\left(x-9\right)-x^{12}\left(x-9\right)+...-x^2\left(x-9\right)+x\left(x-9\right)-\left(x-9\right)+1\)
\(=0+1=1\)
\(A=6xy\left(xy-y^2\right)-8x^2.\left(x-y^2\right)+5y^2\left(x^2-xy\right)\)
\(A=6x^2y^2-6xy^3-8x^3+8x^2y^2+5y^2x^2-5xy^3\)
\(A=19x^2y^2-11xy^3-8x^3\)
Tại x=1/2, y=2
\(A=19.\frac{1}{4}.2^2-11.\frac{1}{2}.2^3-8\left(\frac{1}{2}\right)^3=19-44-1=-26\)