Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có :
BAx = ABC + ACB ( góc ngoài ∆)
=> 115° = 75° + ACB
=> ACB = 115° - 75° = 40°
Ta có :
ABC + ACB + BAC = 180°
=> BAC = 180° - 75° - 40° = 65°
Mà CD là phân giác ACB
=> ACD = BDC = \(\frac{40}{2}\)= 20°
Xét ∆ADC có :
DAC + ADC + ACD = 180°
=> ADC = 180° - 20° - 65° = 95°
Hình vẽ của bạn có thể được mô tả như sau:
- Góc BAx = 130 độ
- Góc ABy = 50 độ
- Góc Acz = 140 độ
- By song song với cz và Ax song song với Bx
- Ba vuông góc với AC
a, ta có : BAx = 1300 y E F B C D x A
ABD = 500
-> BAx + ABD = 1300 + 500 = 1800
=> BAx và ABD là cặp góc cùng phía bù nhau
=> Ax // BD
b, Ax // BD => C1 = A45 ( So le trong )
=> C1 + A3 = A45 + A3 = A345 = 1300
Góc B = 50 độ
Vậy B + C1 + A3 = 180 độ
=> Tổng 3 góc trong tam giác ABC = 1800
c, A12345 = 180 0
A345 = 1300
=> A12 = 500
AF là phân giác của A12 => A1 = A2 = 500/2 = 250
AD là phân giác của A345 => A34 = A5 = 650
=> A3 + A34 = 250 + 650 = 900
ta có : FAD = 900
=> AF vuông góc với AC