Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên nửa mp bờ BC chứa A, dựng tam giác BNC vuông tại C, gọi K là giao điểm EN và AB
\(\left\{{}\begin{matrix}AC=EC\left(\Delta ACE.vuông.cân\right)\\BC=NC\left(\Delta BNC.vuông.cân\right)\\\widehat{ACB}=\widehat{NCE}\left(cùng.phụ.\widehat{ANC}\right)\end{matrix}\right.\Rightarrow\Delta ABC=\Delta ENC\left(c.g.c\right)\\ \Rightarrow\widehat{BAC}=\widehat{NEC}\\ \Rightarrow\widehat{BAC}+\widehat{KAC}=\widehat{NEC}+\widehat{KAC}=180^0\\ \Rightarrow\widehat{AKE}=360^0-\widehat{ACE}-\widehat{NEC}-\widehat{KAC}=90^0\\ \Rightarrow NE\perp AB\\ \left\{{}\begin{matrix}BD=NE\left(=AB\right)\\BD//NE\left(\perp AB\right)\end{matrix}\right.\Rightarrow BDNE.là.hbh\\ \Rightarrow BM=MN\)
Mà \(\Delta BCN\) vuông cân tại C nên \(\Delta BMC\) vuông cân tại M
, Tự vẽ hình và ghi giả thiết kết luận (mình không biết vẽ hình trên máy -_-")
Giải : Từ giả thiết ta có
D là trung điểm của AB và MO
,E là trung điểm của AC và ON
=> ED là đường trung bình của cả hai tam giác ABC và OMN
Áp dụng định lý đường trung bình vào tam giác trên ,ta được
\(\hept{\begin{cases}AD//BC,DE//MN\\DE=\frac{1}{2}BC,DE=\frac{1}{2}MN\end{cases}}\Rightarrow\hept{\begin{cases}MN//BC\\MN=BC\end{cases}}\)
Tứ giác MNCB có hai cạnh đối song song và bằng nhau nên nó là hình bình hành
Từ từ ,hình như mình làm nhầm đề :) Để mình làm lại đã rồi trả lời bn sau nhé!!!!!@@
Xét\(\Delta\)MBD và \(\Delta\)MNE có:
BM=MN
DM=ME
BMD=NME(2 góc đối đỉnh)
\(\Delta BMD=\Delta NME\) (c-g-c)
\(\Rightarrow\)MDB=MEN(2 góc tương ứng)
MÀ 2 GÓC NÀY Ở VỊ TRÍ SO LE TRONG\(\Rightarrow\)DB//NE
Mà DB\(\perp\)AB\(\Rightarrow\)NE\(\perp\)AB
chúc bạn làm tốt