\(\Delta ABC\)các tam giác ABD, ACE vuông cân tại B và C. Gọi M là trung điểm...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2021

Trên nửa mp bờ BC chứa A, dựng tam giác BNC vuông tại C, gọi K là giao điểm EN và AB

\(\left\{{}\begin{matrix}AC=EC\left(\Delta ACE.vuông.cân\right)\\BC=NC\left(\Delta BNC.vuông.cân\right)\\\widehat{ACB}=\widehat{NCE}\left(cùng.phụ.\widehat{ANC}\right)\end{matrix}\right.\Rightarrow\Delta ABC=\Delta ENC\left(c.g.c\right)\\ \Rightarrow\widehat{BAC}=\widehat{NEC}\\ \Rightarrow\widehat{BAC}+\widehat{KAC}=\widehat{NEC}+\widehat{KAC}=180^0\\ \Rightarrow\widehat{AKE}=360^0-\widehat{ACE}-\widehat{NEC}-\widehat{KAC}=90^0\\ \Rightarrow NE\perp AB\\ \left\{{}\begin{matrix}BD=NE\left(=AB\right)\\BD//NE\left(\perp AB\right)\end{matrix}\right.\Rightarrow BDNE.là.hbh\\ \Rightarrow BM=MN\)

Mà \(\Delta BCN\) vuông cân tại C nên \(\Delta BMC\) vuông cân tại M

Giair giùm mình vài bài toán mình :) mình hứa sẽ tích cho các bạn thật nhiều1.Cho tam giác ABC.Qua D là trung đểm của cạnh BC ,kẻ một đường thẳng vuông góc với đường phân giác của góc A nó cắt AB ở M và AC ở N. cmr : BM=CN2.Vẽ ra phía ngoài 2 tam giác ABC các tam giác ABD và BCE cùng vuông cân tại B gọi M là trung điểm của AC.Chứng minh rằng DE=2BM3. Cho tam giác ABC có góc A từ.Trong góc A vẽ các...
Đọc tiếp

Giair giùm mình vài bài toán mình :) mình hứa sẽ tích cho các bạn thật nhiều

1.Cho tam giác ABC.Qua D là trung đểm của cạnh BC ,kẻ một đường thẳng vuông góc với đường phân giác của góc A nó cắt AB ở M và AC ở N. cmr : BM=CN

2.Vẽ ra phía ngoài 2 tam giác ABC các tam giác ABD và BCE cùng vuông cân tại B gọi M là trung điểm của AC.Chứng minh rằng DE=2BM

3. Cho tam giác ABC có góc A từ.Trong góc A vẽ các đoạn thẳng AD,AE sao cho AD vuông góc và bằng AB,AE vuông góc và bằng AC .Gọi M là trung điểm của DE .CMR : AM \(\perp\) BC

4.Vẽ ra ngoài tam giác ABC các tam giác ABD vuông cân tại B,ACE vuông cân tại C,Gọi M là trung điểm của DE.Tam giác BMC là tam giác gì ?? Vì sao?

5.Cho hình thang cân ABCD (AB\(//\) CD) có hai đường chéo AC và BD vuông góc với nhau.CMR chiều cao BH bằng đường Trung bình MN

Còn nhiều bài lắm các bn làm giúp mình nha

 

6
18 tháng 12 2018

, Tự vẽ hình và ghi giả thiết kết luận (mình không biết vẽ hình trên máy -_-")

Giải : Từ giả thiết ta có 

D là trung điểm của AB và MO

,E là trung điểm của AC và ON

=> ED là đường trung bình của cả hai tam giác ABC và OMN

Áp dụng định lý đường trung bình vào  tam giác trên ,ta được

\(\hept{\begin{cases}AD//BC,DE//MN\\DE=\frac{1}{2}BC,DE=\frac{1}{2}MN\end{cases}}\Rightarrow\hept{\begin{cases}MN//BC\\MN=BC\end{cases}}\)

Tứ giác MNCB có hai cạnh đối song song và bằng nhau nên nó là hình bình hành

18 tháng 12 2018

Từ từ ,hình như mình làm nhầm đề :) Để mình làm lại đã rồi trả lời bn sau nhé!!!!!@@

9 tháng 9 2017

Ố ồ =))) Te nhà ta ngày xưa là Superman cơ đấy :vvv

9 tháng 9 2017

Xét\(\Delta\)MBD và \(\Delta\)MNE có:

BM=MN

DM=ME

BMD=NME(2 góc đối đỉnh)

\(\Delta BMD=\Delta NME\) (c-g-c)

\(\Rightarrow\)MDB=MEN(2 góc tương ứng)

MÀ 2 GÓC NÀY Ở VỊ TRÍ SO LE TRONG\(\Rightarrow\)DB//NE

Mà DB\(\perp\)AB\(\Rightarrow\)NE\(\perp\)AB

chúc bạn làm tốtvuivuivui