K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2015

A B C D O M

a) BC vuông góc với AO là theo tính chất hai tiếp tuyến đi qua 1 điểm A

b) Xét hai tam giác DCO và DBA có góc D chung và góc C = góc B = 90 độ (tính chất tiếp tuyến)

=> tam giác DCO đồng dạng với tam giác DBA

=>  DC/DB = DO/DA

=> DC.DA = DO.DB (đpcm)

c) Vì OM vuông góc với DB => OM // BA (cùng vuông góc với DB)

Ta có AM/DM + 1 = (AM + DM)/DM = DA/DM

Theo Viet ta có: DA/DM = AB/MO

=> AM/DM + 1 = AB/OM

=> AB/OM - AM/DM = 1    (*)

Ta lại có tam giác MOA cân (vì góc MOA = góc BAO do so le trong, góc MAO = góc BAO do tính chất hai tiếp tuyến cùng 1 điểm)

=> OM = AM

(*) trở thành: AB/AM - AM/DM = 1 (đpcm)

Bài này là bài cực khó, phạm vi toán lớp 10 rất khó để giải quyết trọn vẹn bài này nên mình xin phép dùng 1 số kiến thức của lớp 11, có gì khó hiểu thì bạn nhắn cho mình, hoặc nên tự tìm hiểu trên mạng nha !! :))

a) G là trọng tâm tam giác ABC \(\Rightarrow3\overrightarrow{OG}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\)

 \(P_{G/\left(O\right)}=OG^2-R^2=\left(\overrightarrow{OG}\right)^2-R^2=\frac{1}{9}\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\right)^2-R^2\)

\(=\frac{\overrightarrow{OA}^2+\overrightarrow{OB}^2+\overrightarrow{OC}^2+2\overrightarrow{OA}.\overrightarrow{OB}+2\overrightarrow{OA}.\overrightarrow{OC}+2\overrightarrow{OB}.\overrightarrow{OC}}{9}-R^2\)

Vì \(\overrightarrow{OA}^2=OA^2=R^2,\overrightarrow{OB}^2=OB^2=R^2,\overrightarrow{OC}^2=OC^2=R^2\)

nên \(\frac{\overrightarrow{OA}^2+\overrightarrow{OB}^2+\overrightarrow{OC}^2+2\overrightarrow{OA}.\overrightarrow{OB}+2\overrightarrow{OA}.\overrightarrow{OC}+2\overrightarrow{OB}.\overrightarrow{OC}}{9}-R^2=\frac{3R^2+2\overrightarrow{OA}.\overrightarrow{OB}+2\overrightarrow{OA}.\overrightarrow{OC}+2\overrightarrow{OB}.\overrightarrow{OC}}{9}-R^2\)

\(=\frac{-6R^2+2\overrightarrow{OA}.\overrightarrow{OB}+2\overrightarrow{OA}.\overrightarrow{OC}+2\overrightarrow{OB}.\overrightarrow{OC}}{9}=-\frac{\left(\overrightarrow{OA}-\overrightarrow{OB}\right)^2+\left(\overrightarrow{OA}-\overrightarrow{OC}\right)^2+\left(\overrightarrow{OB}-\overrightarrow{OC}\right)^2}{9}\)

\(=-\frac{\overrightarrow{BA}^2+\overrightarrow{CA}^2+\overrightarrow{CB}^2}{9}=-\frac{AB^2+AC^2+BC^2}{9}\)

b) Theo ĐỊNH LÍ EULER: \(OH=3OG\)

Theo câu a: \(9OG^2-9R^2=-AB^2-AC^2-BC^2\)

\(P_{H/\left(O\right)}=OH^2-R^2=9OG^2-9R^2+8R^2=8R^2-AB^2-AC^2-BC^2\)

Có: \(\frac{AB}{sinC}=\frac{BC}{sinA}=\frac{CA}{sinB}=2R\)thế lên trên ta được:

\(8R^2-AB^2-AC^2-BC^2=8R^2-4R^2sin^2C-4R^2sin^2A-4R^2sin^2B\)

\(=4R^2\left(2-sin^2A-sin^2B-sin^2C\right)=4R^2\left(cos^2A+cos^2B+cos^2C-1\right)\)(*)

Xét: \(cos^2A+cos^2B+cos^2C=\frac{1+cos2A}{2}+\frac{1+cos2B}{2}+cos^2C\)

\(=1+\frac{1}{2}\left(cos2A+cos2B\right)+cos^2C=1+cos\left(A+B\right).cos\left(A-B\right)+cos^2C\)

Xét \(cos\left(A+B\right)=cos\left(180^0+C\right)=-cosC\)thế lên trên ta được:

\(1+cos\left(A+B\right).cos\left(A-B\right)+cos^2C=1-cosC.cos\left(A-B\right)-cosC.cos\left(A+B\right)\)

\(1-cosC.\left[cos\left(A+B\right)+cos\left(A-B\right)\right]=1-2cosC.cosA.cos\left(-B\right)\)

Mà \(cos\left(-B\right)=cos\left(B\right)\)nên ta kết luận: \(cos^2A+cos^2B+cos^2C=1-2cosA.cosB.cosC\)

Thế vào (*): \(\Rightarrow P_{H/\left(O\right)}=4R^2\left(1-2cosA.cosB.cosC-1\right)=-8R^2cosA.cosB.cosC\)

Đề hơi sai nha bạn, mà thoi không sao :))