Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Diện tích tam giác đó là:
\(S=\dfrac{1}{2}.a.h=\dfrac{1}{2}.7.4=14\left(cm^2\right)\)
a) Diện tích xung quanh của hình chóp tam giác đều là:
\(\frac{{99.40}}{2}.3 = 5940\) (\(c{m^2}\))
Diện tích đáy của hình chóp là:
\(\frac{{40.34,6}}{2} = 692\) (\(c{m^2}\))
Diện tích toàn phần của hình chóp là:
\(5940 + 692 = 6632\) (\(c{m^2}\))
Thể tích của hình chóp là:
\(\frac{1}{3}.692.98,3 \approx 22674,53\) (\(c{m^3}\))
b) Diện tích xung quanh của hình chóp tứ giác đều là:
\(\frac{{91.120}}{2}.4 = 21840\) (\(c{m^2}\))
Diện tích đáy của hình chóp là:
\(120.120 = 14400\) (\(c{m^2}\))
Diện tích toàn phần của hình chóp là:
\(21840 + 14400 = 36240\) (\(c{m^2}\))
Thể tích của hình chóp là:
\(\frac{1}{3}.14400.68,4 = 328320\) (\(c{m^3}\))
Bài 1:
Chiều dài là 26x9/13=18(m)
Chiều rộng là 26-18=8(m)
Diện tích là 18x8=144(m2)
gọi \(x\) là độ dài cạnh góc vuông bé hơn \((x>0)\)
cạnh góc vuông lớn hơn là \(\frac{4x}{3}\)
diện tích tam giác vuông ban đầu là \((x\times\frac{4x}{3})\div2=\frac{2x^2}{3}\)
theo đề ra ta có phương trình
\((\frac{4x}{3}-2)\times x=\frac{2x^2}{3}\times75\div100\)
giải phương trình ta được \(\orbr{\begin{cases}x=0(ktm)\\x=2,4\end{cases}}\)
\(Ad\) \(Py-ta-go\) \(ta\) \(có:\)
\(5^2+12^2=a^2\)\(a-c.huyền\)
\(\Rightarrow a^2=25+144=169\)
\(\Rightarrow a=13\)
\(\Delta vuông\)
\(\Rightarrow t.tuyến=\frac{1}{2}c.huyền\)
\(\Rightarrow t.tuyến=\frac{c.huyền}{2}=\frac{13}{2}=6,5cm\)