Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a) Để hs trên là hs bậc nhất khi và chỉ khi a>0 --> 3+2k>0 --> k >\(\frac{-3}{2}\)
b) Vì đths cắt trục tung tại điểm có tung độ = 5 --> x=0, y=5
Thay y=5 và x=0 vào hs và tìm k
2. a) Tự vẽ
b) Hệ số góc k=\(\frac{-a}{b}=\frac{-2}{4}=\frac{-1}{2}\)
c) Phương trình hoành độ giao điểm là:\(2x+4=-x-2\)(tìm x rồi thay x vào 1 trong 2 pt --> tính y) (x=-2; y=0)
3. Vì 3 đg thẳng đồng quy -->d1 giao d2 giao d3 tại 1 điểm (giao kí hiệu là chữ U ngược)
Tính tọa độ giao điểm của d1 và d2 --> x=2;y=1
Điểm (2;1) thuộc d3 --> Thay x=2 và y=1 vào d3 -->m=3
Sủ dụng: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b};\text{ }ab\le\frac{\left(a+b\right)^2}{4}\)
\(xy\le\frac{\left(x+y\right)^2}{4}\le\frac{1}{4}\)
\(P=\frac{1}{x^2+y^2}+\frac{1}{2xy}+4xy+\frac{1}{4xy}+\frac{5}{4xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{5}{4.\frac{1}{4}}\)
\(=\frac{4}{\left(x+y\right)^2}+2+5\)
\(\ge4+2+5=11\)
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
\(-------\)
Chứng minh bổ đề: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) \(\left(i\right)\) (với \(a,b>0\) )
Bđt \(\left(i\right)\) tương đương với bđt sau:
\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\) \(\left(ii\right)\)
Ta cần chứng minh bđt \(\left(ii\right)\) luôn đúng với mọi \(a,b>0\)
Thật vậy, ta áp dụng bđt \(Cauchy\) loại hai cho từng bộ số gồm hai số không âm đề giải quyết bài toán trơn tru như sau:
\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\) \(\left(1\right)\)
\(a+b\ge2\sqrt{ab}\) \(\left(2\right)\)
Nhân từng vế \(\left(1\right)\) và \(\left(2\right)\) , ta suy ra điều phải chứng minh.
Vì bđt \(\left(ii\right)\) được chứng minh nên kéo theo bđt \(\left(i\right)\) luôn đúng với mọi \(a,b>0\)
Đẳng thức xảy ra khi và chỉ khi \(a=b\)
\(-------\)
Quay trở về bài toán, ta có:
\(1\ge x+y\ge2\sqrt{xy}\)
\(\Rightarrow\) \(\sqrt{xy}\le\frac{x+y}{2}\le\frac{1}{2}\)
nên suy ra được \(xy\le\frac{1}{4}\)
\(P=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)
Áp dụng bđt \(\left(i\right)\) cho biểu thức đầu tiên, bđt Cauchy cho biểu thức thứ hai và với chú ý rằng \(xy\le\frac{1}{4}\) , ta được:
\(P\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{5}{4.\frac{1}{4}}=4+2+5=11\)
Dấu \("="\) xảy ra khi và chỉ khi \(x=y=\frac{1}{2}\) (bạn cần làm rõ khúc này nha)
Vậy, \(P_{min}=11\) \(\Leftrightarrow\) \(x=y=\frac{1}{2}\)
\(y=\left(m-2\right)x+m+3\left(d_1\right);y=-x+2\left(d_2\right);y=2x-1\left(d_3\right)\)
Xét phương trình hoành độ giao điểm A của hai đường \(d_3,d_2\)có:
\(-x+2=2x-1\Leftrightarrow3x=3\Leftrightarrow x=1\Rightarrow y=1\Rightarrow A\left(1,1\right)\)
Để 3 đường thẳng đồng quy tại A thì tọa độ A thỏa mãn phương trình d1 nên:
\(\left(m-2\right).1+m+3=1\Leftrightarrow2m=1\Leftrightarrow m=\frac{1}{2}\)
bấm máy mà tính đồ thị méo bt vẽ thì làm dc j