K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2020

0 -5 -10 5 10 5 10 -5 -10

1 tháng 9 2020

Dưới hình là câu a) nha cậu

1. a) Để hs trên là hs bậc nhất khi và chỉ khi a>0 --> 3+2k>0 --> k >\(\frac{-3}{2}\)

    b) Vì đths cắt trục tung tại điểm có tung độ = 5 --> x=0, y=5

       Thay y=5 và x=0 vào hs và tìm k

2. a) Tự vẽ

    b) Hệ số góc k=\(\frac{-a}{b}=\frac{-2}{4}=\frac{-1}{2}\)

    c) Phương trình hoành độ giao điểm là:\(2x+4=-x-2\)(tìm x rồi thay x vào 1 trong 2 pt --> tính y)  (x=-2; y=0)

3. Vì 3 đg thẳng đồng quy -->d1 giao d2 giao d3 tại 1 điểm (giao kí hiệu là chữ U ngược)

       Tính tọa độ giao điểm của d1 và d2 --> x=2;y=1

        Điểm (2;1) thuộc d3 --> Thay x=2 và y=1 vào d3 -->m=3

        

9 tháng 8 2016

Sủ dụng: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b};\text{ }ab\le\frac{\left(a+b\right)^2}{4}\)

\(xy\le\frac{\left(x+y\right)^2}{4}\le\frac{1}{4}\)

\(P=\frac{1}{x^2+y^2}+\frac{1}{2xy}+4xy+\frac{1}{4xy}+\frac{5}{4xy}\)

\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{5}{4.\frac{1}{4}}\)

\(=\frac{4}{\left(x+y\right)^2}+2+5\)

\(\ge4+2+5=11\)

Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)

9 tháng 8 2016

\(-------\)

Chứng minh bổ đề:  \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)  \(\left(i\right)\) (với  \(a,b>0\)  )

Bđt  \(\left(i\right)\)  tương đương với bđt sau:

\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)  \(\left(ii\right)\)

Ta cần chứng minh bđt  \(\left(ii\right)\)  luôn đúng với mọi \(a,b>0\)

Thật vậy,  ta áp dụng bđt  \(Cauchy\)  loại hai cho từng bộ số gồm hai số không âm đề giải quyết bài toán trơn tru như sau:

\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\) \(\left(1\right)\)

\(a+b\ge2\sqrt{ab}\)  \(\left(2\right)\)

Nhân từng vế  \(\left(1\right)\)  và  \(\left(2\right)\) , ta suy ra điều phải chứng minh.

Vì bđt  \(\left(ii\right)\)  được chứng minh nên kéo theo bđt  \(\left(i\right)\)  luôn đúng với mọi  \(a,b>0\)

Đẳng thức xảy ra khi và chỉ khi  \(a=b\)

\(-------\)

Quay trở về bài toán, ta có:

\(1\ge x+y\ge2\sqrt{xy}\)

\(\Rightarrow\)  \(\sqrt{xy}\le\frac{x+y}{2}\le\frac{1}{2}\)

nên suy ra được  \(xy\le\frac{1}{4}\)

\(P=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)

Áp dụng bđt  \(\left(i\right)\) cho biểu thức đầu tiên, bđt Cauchy cho biểu thức thứ hai và với chú ý rằng  \(xy\le\frac{1}{4}\) , ta được:

\(P\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{5}{4.\frac{1}{4}}=4+2+5=11\)

Dấu  \("="\)  xảy ra  khi và chỉ khi  \(x=y=\frac{1}{2}\)  (bạn cần làm rõ khúc này nha)

Vậy,  \(P_{min}=11\)  \(\Leftrightarrow\)  \(x=y=\frac{1}{2}\)

26 tháng 5 2021

cảm ơn ạ

30 tháng 5 2017

\(y=\left(m-2\right)x+m+3\left(d_1\right);y=-x+2\left(d_2\right);y=2x-1\left(d_3\right)\)

Xét phương trình hoành độ giao điểm A của hai đường \(d_3,d_2\)có:

\(-x+2=2x-1\Leftrightarrow3x=3\Leftrightarrow x=1\Rightarrow y=1\Rightarrow A\left(1,1\right)\)

Để 3 đường thẳng đồng quy tại A thì tọa độ A thỏa mãn phương trình dnên:

\(\left(m-2\right).1+m+3=1\Leftrightarrow2m=1\Leftrightarrow m=\frac{1}{2}\)